

CONTENTS

1	CELL BIOLOGY	1
CHEM PAPER 1 BIO PAPER 2 BIO PAPER	ORGANISATION	4
	INFECTION & RESPONSE	7
	BIOENERGETICS	9
	HOMEOSTASIS & RESPONSE	11
	INHERITANCE, VARIATION & EVOLUTION	13
	ECOLOGY	16
	ATOMIC STRUCTURE & PERIODIC TABLE	19
	BONDING, STRUCTURE, MATTER	23
	QUANTITATIVE CHEMISTRY	26
	CHEMICAL CHANGES	28
	ENERGY CHANGES	32
CHEM PAPER 2	RATE & EXTENT OF CHEMICAL CHANGE	33
	ORGANIC CHEMISTRY	36
	CHEMICAL ANALYSIS	37
	CHEMISTRY OF ATMOSPHERE	38
	USING RESOURCES	40
PHYSICS PAPER 1	ENERGY	42
	ELECTRICITY	45
	PARTICLE MODEL OF MATTER	49
	ATOMIC STRUCTURE	51
PHYSICS PAPER 2	FORCES	54
	WAVES	60
ط ه	MAGNESTISM & ELECTROMAGNETISM	63

EUKARYOTIC AND PROKARYOTIC CELLS

EUKARYOTIC CELLS (ANIMAL & PLANT)

- DNA enclosed in a nucleus.
- Larger (10-100 μm).
- · Found in animals, plants, fungi, protists.

Animal Cells (Eukaryotic)

- Nucleus contains genetic material, controls cell activities.
- Cytoplasm site of chemical reactions.
- Cell membrane controls substance movement.
- Mitochondria site of aerobic respiration.
- Ribosomes site of protein synthesis.

Plant Cells (Eukaryotic) (Same as animal cells, plus:)

- Cell wall (cellulose) provides strength.
- Chloroplasts photosynthesis, contain chlorophyll.
- Permanent vacuole stores cell sap, maintains structure.

PROKARYOTIC CELLS (BACTERIA)

- Smaller (~1 μm).
- No nucleus DNA is a single circular strand in cytoplasm.
- May have plasmids (small rings of DNA).
- No mitochondria or chloroplasts.
- Cell wall (peptidoglycan) for support.

Animal cell Nucleus Cytoplasm Cell membrane Cell wall Chloroplasts

SCALE & SIZE OF CEU

- Cells are very small and remicroscope to be seen.
- Measured in micrometer
- $1 \mu m = 0.001 mm = 1 \times$
- Be able to convert bet
- 1 mm = 1000 μm (×10 μm, ÷1000 for μm > mm).
- 1 μm = 1000 nm (×1000 to con. nm, ÷1000 for nm → μm).

ORDER OF SIZE (FROM SMALLEST TO LARGEST)

- HIV Virus ⇒ 1
- Mitochondri 'asts → 1.5 μm
- Cholera Ba
- · Cheek Cell (Anin.
- · Palisade Mesophyll Ce.
- Many subcelled structures in cells are the larger than prokaryo'

ORDEF AGNITY

- Us ompare siz actors of 10:
- · Metric .
 - Centi- (cm,
 Milli- (mm) ⇒ x c.
 '··m) ⇒ x 0.00c.
 o 0000000c. (10-9)
- L ry small Jmbers to avo n.

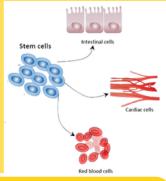
 Ex. ?rsions:0.0015 → 1.5 × 10⁻³

 73.5c · 10⁴

calculations as they

CELL DIFFERENTIATION

Process where cells becon - specialised by swith train genes on t


Sp A cells develop
 s' s suited to
 ction.

ANIIVA LS

- Occurs early in
 velopment, then stops.
 n adults, only stem
 cells (e.g., bone marrow)
 can differentiate for
 repair & replacement.
- Red blood cells lose their nucleus, so cannot divide.

DIFFERENTIATION IN PLANTS

- Occurs throughout life.
- Cells differentiate when positioned but can redifferentiate if moved.

CELL BIOLOGY

CELL SPECIALISATION (ANIMALS)

SPERM CELL -Function: Carries male DNA to the egg for fertilisation.

- · Streamlined head and
- Mitochondria in mid movement.
- Acrosome (head) → cont.
 es to b wn egg membrane.
- Haploid nucleus ⇒ restores no number after fertilisation.

NERVE CELL (NEURONE) -Function: 7.

electrical signals oss the body.

- Long axon impulses over long a
- Dendrites with other nerve cells, s and glar
- Myelin > insulater pulse transmi
- Mitochc → prc argy for neurotra.

MUSCLE CELL stracts to exprement.

- Contains protein ...aments ⇒ allow ion.
- Lots of mitochondria → release
 contraction.
- Stores glycogen > energy sourc nitochondria.

Ch. SPECIALISATION (PLANTS)

i HAIR CELL -Function: Absorbs water and minerals from soil.

- Large surface area (root hairs) → increases water uptake.
- Thin cell wall → reduces diffusion distance.
- Large vacuole → maintains water movement.
- Mitochondria > provide energy for active transport of minerals.

XYLEM CELL -Function: Transports water and dissolved minerals from roots to leaves.

- Hollow (no organelles/cytoplasm) → free water movement.
- Walls thickened with lignin ⇒ provides strength and prevents collapse.
- End walls broken down ⇒ forms a continuous column of water.

PHLOEM CELL -Function: Transports sugars (from photosynthesis) around the plant.

- Joined end-to-end → forms continuous tubes.
- Sieve plates (holes in end walls) > allow easy flow of sugars.
- Few subcellular structures ⇒ reduces resistance to flow.
- Companion cells with mitochondria ⇒ provide energy for active transport.

COMMUNICABLE (INFECTIOUS) DISEASES

Caused by pathogens → transmissible (e.g. HIV, malaria, TB)

Pathogens include:

- Bacteria → reproduce quickly → release toxins → damage tissue
- Viruses → invade cells → replicate → burst cell → illness
- Fungi → can produce spores → spread to others
- Protists → often parasitic (live in host and cause damage)

Transmission methods:

- Direct contact ⇒ touching skin/fluids/faeces/infected plant material
- By water > dirty/contaminated water
- By air → droplet infection (sneezing, coughing > inhaled)

PREVENTING SPREAD OF DISEASE

- 🥏 Hygiene → wash hands, clean surfaces, cover sneezes
- III Food hygiene → keep food cold, cook thoroughly, use clean utensils
- Waste disposal → cover bins, remove waste ⇒ stop flies (vectors)
- 💉 Vaccination > triggers immune response > stops pathogen spreading
- Note: The proof of the proo remove habitats

VIRAL DISEASES

- Not living (no 7 life proces nucleus/cytoplasm/organ
- Reproduce rapidly → in' DNA/RNA → host cell b viruses → cell bursts ÷ spread

MEASLES

- Symptoms ⇒ fever + red rash > may cause blindness/brain
- Spread → dronlet infection (cough/snee: contagious
- Prevention childhood vacci.

HIV/AIDS

- Symptovirus attar bec 1) aک exual c ood
- ,, birth/bre on > condc
 - 'nod, no ugs

TOBACCO MOSAL

cocts > plants (ton. ~+c.)

~~red

contac an stay in . ~5€

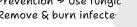
Preven ne + TMV-

INFECTION & RESPONS

FUNGAL DISEASES

ROSE BLACK SPOT

- Symptoms > Purple/black spots on leaves → less photosynthesis > yellowing + early leaf drop
- Spread → Spores via wing
- Prevention → Use fungic Remove & burn infected


NON-SPELL

- Skin > barrı€
- acteria

ICE SYSTEMS

- Nose > hairs + mc Trachea/Bronchi > cilic.
- Athogens e mucus →

.estroy

Lymphocyte produces antibodies with specific

a kins puchogens natural flora outcompete

EM OVERVIEW

d cells (WBCs) → defend athogens via:

sis → WBC engulfs + digests

ade by lymphocytes → bind Ant. on pathogen surface) → to anti. re age lination (clumping) > cytes digest ins → neutralise toxins (from

ES & ANTITOXINS

dies > Y-shaped > specific to 1 en → clump pathogens nory cells → quicker response if zinfected

Antitoxins → neutralise bacterial toxins

PACTERIAL DISEASES

- Bacterial pathogens → infect plar ·mals → produce toxins → da
- 1 acteria ~mful > mpete v nogens) > gest cel' nake Vit K) 61 , fission → ist + nutrient-

rich.

SALMONELLA

Symptor Fever + cramps + vomitiv rrhoea (toxins irritat <ore

> ed/contaminated food eggs, chicken)

on → UK chicken vaccin ted > Cook food thoroughly → Prevent raw meat crosscontamination → Hand + surface washing

GONORRHOEA

- Symptoms → Yellow/green discharge + pain urinating + possible infertility/blindness in babies
- Spread → Unprotected sex
- Prevention → Condoms → Antibiotics (some resistance) > Contact tracing & treatment

PROTIST DISEASES

Eukaryotic, mostly unicellular > few are pathogenic → spread via vector (e.g. mosquito) → infect host

MALARIA OVERVIEW

- Cause → Protist from Plasmodium genus
- Spread → Female Anopheles mosquito (vector)
- Symptoms → Recurrent fever + shaking > due to bursting red blood cells → can be fatal
- Treatment > Antimalarial drugs (less effective due to resistance)
- Prevention >
- Insecticides in buildings → Insecticide-treated nets → Stop mosquito breeding (remove standing water) → Antimalarials for travellers

MALARIA LIFE CYCLE

Mosquito bites human → parasite enters liver → asexual reproduction ⇒ enters blood ⇒ infects RBCs ⇒ mosquito feeds again → sexual reproduction in mosquito

PHOTOSYNTHESIS

- Plants = autotrophs → make own food using light, CO₂ + H₂O
- Producers in food chains
- Endothermic reaction ⇒ energy from environment ⇒ chloroplasts via light
- Takes place in mesophyll cells (contain chlorophyll)
- ◆ Glucose → used for respiration + to make plant substances
- Oxygen → by-product, used in respiration / diffuses out

Ø EQUATIONS

Word:

- CO₂ + H₂O → (light + chlorophyll) → Glucose + O₂
 Balanced symbol:
- 6CO₂ + 6H₂O ⇒ (light + chlorophyll) ⇒ C₆H₁₂O₆ + 6O₂

★ REACTANTS: HOW THEY ENTER

- H₂O ⇒ absorbed by roots ⇒ xylem ⇒ leaves
- CO₂ → diffuses in through stomata

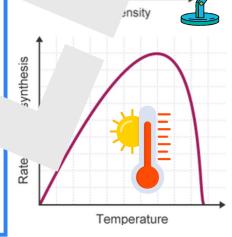
FACTORS AFFECTING PHOTOSYNTHESIS

LIGHT INTENSITY

- ↑ light ⇒ ↑ rate (more energy another factor limits
- Graph: linear ↑ > plateau

CO2 CONCENTRATION

- ↑ CO₂ → ↑ rate (more raw material) → then levels off
- Graph: same pattern as light


TEMPERATURE

- ↑ temp → ↑ kinetic
 → ↑ rate
- Too high → enzymes denature
- Graph: curve with neak

CHLOROPHYLL

- More chlorc faste
- ↓ chloropl
 /e to dise
 leaf loss)
 ·e

1 Mg²+,

At low light intensities

increase in the rate

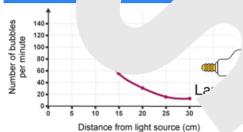
PLOENERGETICS

REQUIRED PRACTICAL

Aim → Effect of light intensity on rate of photosynthesis (via oxygen production)

Method:

- → Pondweed in water → lamp o distance → count bubbles in 3 repeat at diff. distances → ca' mean
- Variables
- → IV = Distance from lamp
- > DV = Bubbles/min
- → CVs = Temp (thermometer) → CO₂ (NaHCO₃) → same plant, time, volume of water


Improvements

- → Use gas syringe.
- → Repeat for accuracy
- → Glass tank or LED to s changes

Results

- → Distance ↑ → light intensity ↓
 bubbles/min ↓
- → Graph = Yownwards
- → Suppor' square law:
- Light y

 1 / dis^t

Y OF LIM. FING FACTORS

hotosynthesis

sity, temp or CO₂ increases (until

ctor livi.

INVERSE

LAW (HT ONLY)

ate (more light → more photosynthesis)another factor becomes limiting

iaht Intensity = 1/ Distance2

distance = $30 \text{cm} \rightarrow \text{Light intensity} = 1/30^2 = 0.001 \text{ au}$

from lamp → lower intensity

M GROV.

GREENHOUSE

Control lim. , factors to boost photosynthesis ⇒ increase yield ⇒

raps heat, paraffin heaters

CO₂ → from heaters

Water → irrigation system

- 🏶 Pests/diseases → enclosed space, easier to manage
- Nutrients ⇒ fertilisers
- Only increase factors until another becomes limiting ⇒ avoid vasting money

Water

Water

Factors limiting

Low carbon dioxide concentration, low temperature

Low carbon dioxide concentration, low temperature

Low carbon dioxide concentration, low temperature

HOMEOSTASIS

= regulation of internal conditions ⇒ keeps conditions optimal for enzyme action and cell functions

- Controls:
- Blood glucose → Body temperature → Water levels

CONTROL OF HOMEOSTASIS

- Involuntary (automatic) control → controlled by brain stem + spinal cord
- May involve: nervous or chemical responses
- Control system =
- Receptors (detect stimuli) → Coordination centres (brain/spinal cord/pancreas) > Effectors (muscles/glands bring response)

ENDOCRINE SYSTEM

- Glands that secrete hormones directly into the bloodstream > hormones travel in blood > affect target organs.
- Compared to nervous system:
- Slower → longer-lasting effects.

MAIN ENDOCRINE GLANDS & HORMONES:

- Pituitary gland → master gland → FSH, LH, TSH (stimulates other glands)
- Pancreas → insulin (blood glucose)
- Thyroid → thyroxine (controls metabolism & growth)
- Adrenal glands → adrenaline (prepares body for action)
- Ovaries (females) → oestrogen (female sex hormone)
- Testes (males) → testosterone (male sex hormone)

PITUITARY GLAND

- Master gland > releases hormones into blood in response to conditions
- > stimulates other gla (e.g. TSH → thyroid → thyroxine)
- Hormones only affect targe. cells → must have complementary receptors
- Non-target cells = no effect

HORMONE ACTION

· Process: Glar ituitary) ⇒ releases / carried receptors in blood → on targel > causes a response

HUMAN NERVOUS SYSTEM

- CNS = brain + spinal cord
- PNS = all other nerves in body
- Info sent as electrical impulses > travel along neurones
- Bundle of neurones = nerve
- Enables responses to surroundings coordination of behaviour

ADAPTATIONS OF NEURONES

- Cell body → contains nucleus + organelles
- Axon + dendrites → extensions from cell bodu
- Long axons (up to 1m) → f -ianal transfer, fewer synapses
- Myelin sheath → insulat impulse jumps between gaps ,

STRUCTURE OF THE NERVOUS SYSTEM

- Stimulus → receptor effector → respons
- Receptor = detec change)
- CNS (brain + s' coordinator
- Effectors = rout respons

Produces

rd) =

situated at the base

ds > ca

LEX ARC

comatic → Rapid → No nscious ! involvement

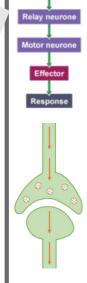
nway:>>>>

NEURON'

Censori

Cell bod eptor → C » Only in

.nd Mic. > CNS > <


∳ SYNAPSES

Gap between neurones > impulse can't c neurotransmi'

ilse > release → Diffuse Bind to impulse triggere. protransmitters

destroyed/recycled Only 1-way ⇒ avoids confusion

🂊 Drugs affect synapses (e.g. heroin binds to receptors > overstimulation)

JIRED PRACTICAL

→ Investigate effect of a factor on man reaction time

You will → Choose factor (e.g. caffeine, music) > Measure & compare reaction times

IETHOD (RULER DROP)

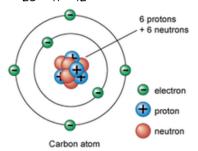
- Work with a partner
- Person A holds out their hand, thumb + finger apart
- 📏 Person B holds ruler at 0 cm level with A's thumb
- ! Without warning, drop ruler → Person A catches it
- Necord level ruler caught at ⇒ repeat ×10
- Swap roles and repeat
- 📊 Use conversion table to find reaction time (ms) from distance (cm)
- Repeat → Calculate mean → Change 1 condition (IV) → Repeat
- Keep same: hand used > height of drop > ruler orientation > environment

VARIABLES

- IV > Caffeine / Music / Age / Stress
- DV → Distance caught (converted to time)
- CV → Same hand → Same height → Same ruler → No prior caffeine/sound

INTERPRETING DATA

- Exclude anomalies (e.g. 573 ms)
- Correct mean = total of valid results ÷ number of results
- Lower time = faster reaction


HOMEO ASIS & RESPONSE

ATOMS & ELEMENTS

- All substances ⇒ made of atoms (building blocks of matter)
- Atoms contain: protons (+1) / neutrons (0) / electrons (-1)
- Protons & neutrons in nucleus ⇒ most of atom's mass
- Electrons orbit nucleus in shells ⇒ tiny mass

ATOMIC STRUCTURE

- Atomic number = no. of protons = no. of electrons (in neutral atom)
- Mass number = protons + neutrons
- To find neutrons ⇒ mass number
 atomic number
- 🧠 Example:
- Sodium (Na): atomic number = 11 / mass number = 23 → neutrons = 23 - 11 = 12

Subatomic Particle	Relative Charge	Relative Mass
Proton	1	1
Neutron	0	1
Electron	-1	Negligible (1/2000)

ELEMENTS & SYMBOLS

- Element = substance with only 1 type of atom ⇒ same no. of protons
- Atoms of same element → same atomic number
- Symbols ⇒ 1 or 2 letters (first = capital, second = lowercase)
- E.g. Carbon = C / Oxygen = O / Sodium = Na / Iron = Fe
- Some elements exist as molecules
 → H₂, O₂, N₂, F₂, Cl₂, Br₂, I₂

PERIODIC TABLE BASICS

- Organises elements by number
- Groups (columns) ⇒ no. o. electrons
- Periods (rows) ⇒ no. of electronshells
- Know names/symbols of first 20 elements
- Learn trends;
- · Group 1 > alkr
- Group 7 → h
- Group 0 > es

COMPOUNDS

- Atoms react ⇒ fixed ratios ⇒ full out shells ⇒ new substances = compour
- A compound = 2+ elements chemic combined → cannot be separated physical means
- Properties of compounds ≠ prorelements they're made from
- · Chemical formula shows ratio of atom.
- · Example:
- H₂O ⇒ 2 hydrogen, 1 oxygen
- NH₃ ⇒ 3 hydrogen, 1 nitrogen

MOLECULE OF AMMONIA

 NH₃ = 1 nitrogen atom ¹2d to 3 hydrogen atoms

COMMON MISTAKE

Elements = pure substant
 also pure (NOT impure)

NAMING COMPOUNT METALS (Ionic)

- Metal named
- Non-metal c ending oxygen is p '-ate')
- e.g. PbS = Jlphide | Mç magnesit
- CuSO₄ : sodium car.
- NaNO₃ = sodium
 NaNO₂ = sodium nitrite
- End = fewer oxygen = '-c

NON-

- Use p NO = nic oxide, tetrachlori
- Some use con you must learn:
- H₂SO₄ = sulfuric = ammonia |

mames of fict, 112004, 33,

HALF/ION. (HT)

reao

LONS

1 =

+ NON-

-1

electrons in a

Repress nalf the process:
or s gains electrons (reduction)

pecies loses electrons n)

>- → Pb (reduction)

2e- (oxidation)

TONIC & ON

45:

ow o, the ions that react in a
ion

'e spectator ions (ions that don't
2 during the reaction)
puation:

NaOH → NaCl + H₂O
equation:

+ OH- → H₂O

a⁺ and Cl⁻ are spectator ions (present on both sides, unchanged)

EQUATIONS

WORD EQUATIONS

- E.a dium hydroxide + hydrochloric aci um chloride + water
- K
- ts = left oducts =

 le

 (→) = "f roduces"

 'a' n be written

Exami

- CO₂ → 1 xygen
- H₂SO₄ ⇒ 2 hyw. ,en, 1 sulfur, 4 oxygen
- Ca(OH)
 -!cium, 2 oxygen, 2
 hydror
 .ket applies to both O
 and P

(IONS

cal formulae instead of full

- JH (aq) + HCl (aq) → NaCl (aq) + H2O (l)
- Include state symbols: (s), (l), (g), (aq)
- Write non-metal molecules as pairs: H₂, O₂, Cl₂, etc.

BALANCING EQUATIONS

- Atoms must be equal on both sides
- Balance by placing numbers in front of formulas (not changing subscripts!)
- Balance 1 element at a time → check → repeat

Word Equation:

 aluminium + copper(II) oxide → aluminium oxide + copper

Unbalanced Symbol Equation: • Al + CuO → Al₂O₃ + Cu

Al + COO → Al₂O₃ + CO
 Balanced Symbol Equation:

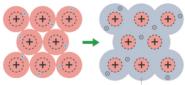
• $2Al + 3CuO \Rightarrow Al_2O_3 + 3Cu$ 1.Al: 2 on left, needed for Al_2

2.0: 3 on right (in Al₂O₃) \Rightarrow need 3 CuO 3.Cu: 3 on right to match CuO

Word Equation:

- magnesium oxide + nitric acid > magnesium nitrate + water
- Unbalanced Symbol Equation:
- MgO + HNO₃ → Mg(NO₃)₂ + H₂O
- Balanced Symbol Equation:
- MgO + 2HNO₃ → Mg(NO₃)₂ + H₂O
 Check:
- Reactants → 1Mg, 2H, 2NO₃
- Products → 1Mg, 2H, 2NO₃
- 🗾 Balanced

TIPS


X Don't change small numbers in formulas (e.g. H₂O → H₂O₂)

☑ Only change big numbers in front of substances

STRUCTURE & PERIODIC TABLE

METALLIC BONDING

- Metals form giant structures with atoms in a regular lattice.
- Outer shell electrons are lost ⇒ form positive metal ions.
- Delocalised electrons (freemoving) surround these ions.
- Metallic bonds = strong electrostatic forces between positive ions and delocalised electrons.
- · Occurs in metals and alloys (mixtures of metals).
- This structure is often described as a "sea of electrons".

KEY FEATURES

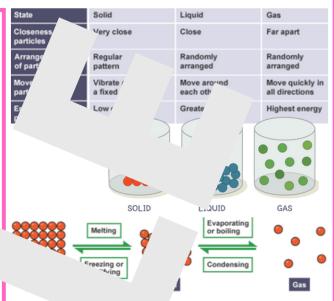
- Electrons are not attached to specific atoms → move freely.
- Bonding is strong and acts in all directions.

Delocalised electrons allow:

- → Good electrical conductivity
- → Malleability (layers can
- → High melting and boiling points (due to strong bonds)

3 STATES OF MATTER

Solids, liquids, gases


- ➤ Exist depending on temperature (and pressure)
- ➤ Change state at:
- Melting point: solid ⇌ liquid
- Boiling point: liquid ⇌ gas
- ➤ Melting & freezing ⇒ m.p. | Boiling & condensing ⇒ b.p.

CHANGES OF STATE (PHYSICAL)

- Stronger forces → more energy needed > higher m.p. & b.p.
- Particles stay same only arrangement/movement changes

STATE CHANGES SUMMARY

- Melting ⇒ solid ⇒ liquid / absorbed > ↑ KE > particles
- Boiling > liquid > gas | Bubblas form inside liquid > 0 escapes
- Freezing > liquid Temp drops → pc COD flowing
- Evaporation → > gas | Surface only Faster if wo
- Condensation . Cooling → particles lu_ > form liquid
- Sublimo ~lid → gas (e.g. iodine) desur

TATES OF

Temp > 2> > gas

ER CONT.

TATIONS OF PARILCLE THEORY

nes all particles are small, solid, inelastic spheres esn't account for differences between atoms / ions nolecules / mixtures

gnores intermolecular forces between particles in different substances

FDICTING PHYSICAL STATE

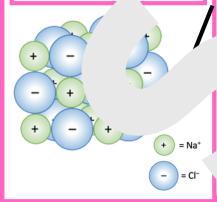
melting point (mp) + boiling point (bp) > at certain temp: Example (25 °C):

> solid

/ < bp → liquid

O₂: mp -219 °C, bp -183 °C - gas Br₂: mp -7°C, bp 59°C → liquid

N₃: mp -210 °C, bp -196 °C → gas


STATE SYMBOLS

- Show the physical state of a substance in an equation →
- (s) = solid | (l) = liquid | (g) = gas | (aq) = aqueous (dissolved in water)

state	symbol	example
solid	(s)	NaCI(s)
liquid	(1)	H ₂ O(I)
gas	(g)	NH₃(g)
aqueous*	(aq)	NaCl(aq)

*compounds dissolved in water

- after formulas (e.g. H2 required in all chemical equations
- 📌 Example:
- CuCO₃ (s) + 2HCl (aq) ⇒ CuCl₂ $(aq) + CO_2(g) + H_2O(l)$

IONIC CON

Structure > Gian ce of oppositely chargea gular 2D arranaement

ling point → Due to str. ae number of bonds

Charge & me. charge = stronge. er melting point

οα Ma²⁺ + Ω²⁻ has stronge. Forces

Solid ⇒ J 1 in lattice > no conduction 10vem 'ter $n \Rightarrow Ions$ free to move narge → conducts

or → Don't say "ei o" → say "ions move and c

FORMULA . COMPOUND

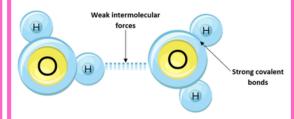
rify io. From the diagram ross, 3D lattice) charges → Use the group

g. Group 1 > 1+, Group 6 >

3.B larges → Total positive = ative > overall charge = 0 EY K20

Jup 1 → 1+ | 0 = Group 6 → 2-2 K+ to balance 1 O²- → mula: K20

NALL MOLECULES


... ELTING & BOILING POINT OF SMALL MOLECULES

Small molecules = gases/liquids/solids with low m.p. & b.p.

- Strong covalent bonds (within molecules) > weak intermolecular forces (between molecules)
- e.g. CO2, CH4
- → Weak intermolecular forces > low m.p./b.p. > require little energy to overcome
- → Larger molecules → stronger intermolecular forces \Rightarrow higher m.p./b.p.
- Small covalent molecules = poor conductors (even when molten)
- → No free ions/electrons to carry charge
- → Most are insulators (e.g. plastic, rubber, wood)

INTERMOLECULAR FORCES VS COVALENT BONDS

- Covalent bonds → between atoms (strong)
- Intermolecular forces → between molecules
- ⇒ When melting/boiling ⇒ intermolecular forces break, not covalent bonds
- → Weak intermolecular forces = low m.p./b.p.
- 📌 When covalent molecules melt/boil, they do NOT split into atoms or new elements.

ENERGY TRANSFER IN REACTIONS

- Energy is conserved → not created or destroyed, only transferred
- Measured with thermometer → indicates heat flow
- If energy released → products have less energy than reactants > exothermic
- If energy absorbed → products have more energy than reactants > endothermic

EXOTHERMIC VS ENDOTHERMIC

- Exothermic → heat out → temp $\uparrow \Rightarrow e.g.$ combustion | neutralisation | respiration
- Endothermic → heat in → temp → e.g. thermal decomposition | photosynthesis | citric acid + NaHCO₃

ENERGY FLOW SUMMARY

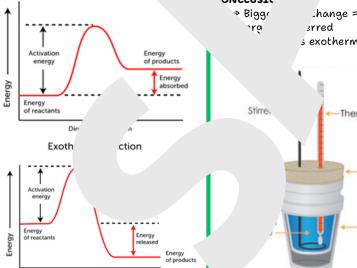
- Exothermic → surroundings get hotter → system energy ↓
- Endothermic → surroundings get cooler → system energy ↑

EXAMPLES

- Exothermic → self-heating cans I hand warmers
- Endothermic → cold packs

TIP

- · Use temperature change of surroundings to identify reaction type
- 1 temp = exothermic | ↓ temp = endothermic



Endothermic reaction 111111 * * * * * * * * Heat out Heat in

REACTION PROFILES

Endothermic React

Direction of reaction

REQUIRED PRACTICAL: TEMP CHANGES

OBJECTIVE

→ To investigate temperature change during neutralisation (HCl + NaOH)

HYPOTHESIS

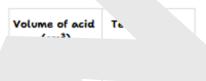
→ Temperature change depends on amount/concentration of reactants

MATERIALS

- Dilute HCl → acid
- Dilute NaOH → alkali
- Styrofoam cup + lid → in
- Thermometer + stirrer
- 25 cm³ measuring cylinder

APPARATUS SET-UP

Thermometer + stir through lid > in s' holds reaction w prevents heat I

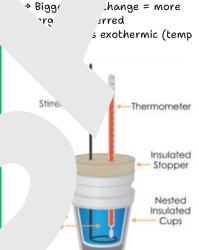

METHOD

- Measure 25 calorimete:
- Record initial tem,
- Add 5 cm3 HCl > stir > . max ter
- Repeal -ing volumes of HCl (

1d t/

Plot . biggest

RESULTS TABLE



19

EVALUATION

→ Plot temp vs acid vu draw best fit line

ONCLUSIC

REACTION PA

ACTIVATION ENERGY (E.,

- Collision needed for reaction → must have:
- Enough energy
- Correct orientati

rauent collisic n ene

= minimum energy stion

start (more energy

neeu

Ea shown as lergy rise at the start of a reaction profile

ENERGY PROFILES

Y-axis = energy | X-axis = progress of reaction

- Arrow shows overall energy change:
- ▼ Exothermic → energy released (products) have lower energy)
 - Endothermic → energy absorbed (products) her energy)
 - ce in height = overall energy change

"ERGY CHANGE (BOND) (HT)

nd breaking → endothermic (energy in) ond making → exothermic (energy out) 🙅 Uverall energy change = bond breaking - bond making

ENDOTHERMIC REACTIONS

- More energy absorbed than released → ∆H is
- Products have more energy than reactants

EXOTHERMIC REACTIONS

- More energy released than absorbed → ∆H is negative
- Products have less energy than reactants

BOND ENERGY CALCULATIONS

• Equation:

Energy change = Total energy in - Total energy out Steps:

- Add all bond energies in reactants (breaking)
- Add all bond energies in products (making)
- Subtract: in out

Example 1 - Reaction: H₂ + Cl₂ → 2HCl

- Break: H-H (436) + Cl-Cl (242) = 678 kJ
- Make: $2 \times H-Cl(431) = 862 \text{ kJ}$
- $\Delta E = 678 862 = -184 \text{ kJ} \Rightarrow \text{Exothermic}$

Example 2 -Reaction: 2HBr > H2 + Br2

- Bonds broken: $2 \times H-Br = 732$
- Bonds formed: H-H = 436, Br-Br = 193 → Total out = 629
- 732 629 = +103 kJ > Endothermic

- ✓ State whether overall energy change is + (endothermic) or - (exothermic)
- ☑ Use the word "energy is released/absorbed"

RATE & EXTENT OF CHEMICAL CHANGE

CALCULATING RATES OF REACTION

- Depends on: type of chemicals / physical state / temperature / concentration / catalysts.
- Measured by how fast > reactant used up / product formed.

CALCULATING RATE

- > amount of reactant used ÷ time taken
- → amount of product made ÷ time taken Units:
 - > g/s (mass)
- → cm³/s or dm³/s (gas volume)

METHODS TO MEASURE RATE 1. MASS LOSS (GAS RELEASED)

- Mass recorded every few seconds using a
- E.g. CaCO₃ + HCl → CO₂
- Pros: very accurate
- X Cons: gas escapes to air

103.0 g

2. GAS COLLECTION (VOLUME)

- Gas volume collected in:
- > measuring cylinder (downward displacement)
- > gas syringe
- E.g. Mg + HCl → H2
- Volume recorded over time
- ✓Pros: accurate, allows graph plotting
- XCons: syringe can pop off if vigorous

3. PRECIPITATION (CLOUDY MIXTURE)

- Precipitate clouds solution → marks (e.g. cross)
- E.g. sodium thiosulfate + HCl → sul
- · Time how long cross disappears

✓Pros: simple setup

XCons: subjective / only one data point , possible

· Often more useful in mr

USING MOLES

REACTION RATES

No direct way to mea moles → must convert mass/volume to moles

TO CONVERT TO MOL/S

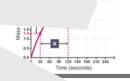
- Mass per unit time ÷ Molar mass = Moles per unit time
- Volume per unit time ÷ 24,000 $cm^3/mol = Mo'$ r unit time

EXAMPLE

- · Q: 6.0 g/ n 2.5 min. What's t in mol/s?
- 1. Time to s
- 2.5 min
- 2. Mass to m
- Moles = m. 44.0 = 0.137 m.
- 3. Rate = moles ÷ time:
- Rate = 0.137 ÷ 150 = 9.1 × 10-4 mol/s

RATE GRAPHS

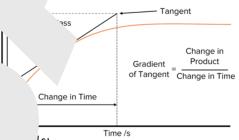
- Y-axis → Product f Reactant used
- X-axis > Time
- Steep line > Fast rate | Fin.
 - → Reaction complete
- More product at end → More reactants used


GRAPH SHAFES

- · Product Positive curve (steep !
- Reactu. (steep fall true
- Initial rate > Strain origin
- St or reaction

FROM GRAF.

Mea. ange in y / change in


CALCULATING L

LENTS (HT) T (USING A

he touching curve only

Choose ar points on the tangent → ge in y (product/amount) and x neas

change in y / change in x

la: $radient) = \Delta Product \div \Delta Time$

the difference between mean rate (overall ے ÷ time) and instantaneous rate (tangent .dient at one point).

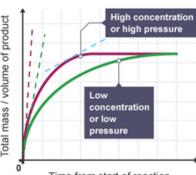
FECTING ORS / IE OF TION

cions)/ ncentrati 100

(ids)

> Cau. .ce Higher ru. faster product formation / faster reactant use

GRAPH PATTERN FOR RAT GES


ors below:

eper gradient = faster rate rizontal sooner = reaction hes quicker

Same final product amount

CONCENTRATION / PRESSURE

1 Concentration/Pressure = more particles per cm³→ 1 Frequency of collisions → 1 Rate

Time from start of reaction

TEMPERATURE

- ↑ Temp → ↑ Particle kinetic energy
- → 1 Frequency + Energy of collisions

SURFACE AREA

- **↑** Surface area (e.g. powder not lumps) > 1 Area exposed > 1 Collision frequency → 1 Rate
- E Cube cut into smaller cubes = larger total surface area

CATALYST

Catalyst → Provides alternative pathway with lower activation

- → More particles have enough energy to react
- ⇒ Reaction speeds up, catalyst remains unchanged

Graph: Same final amount, steeper initial slope

TIPS

- 🗸 Always mention collision frequency/energy
- ✓ Use graph comparisons: gradient + final plateau
- State particles per unit volume for concentration/pressure questions
- Explain surface area as smaller particle size

CRUDE OIL, HYDROCARBONS & ALKANES

- Organic Chemistry: Chemistry of carbon compounds.
- Hydrocarbons: Compounds made of carbon and hydrogen only.

TYPES OF FORMULAE

- General Formula: Shows the composition of any member of a homologous series (e.g. Alkanes: CnH2n+2).
- Displayed Formula: Shows all the atoms and bonds in a molecule.
- Molecular Formula: Shows the actual number of each atom in a molecule (e.g. Butane: C₄H₁₀).
- Structural Formula: Shows the structure without displaying all bonds (e.g. Pentane: CH₃(CH₂)₃CH₃).

HOMOLOGOUS SERIES

Characteristics:

- · Same functional group.
- · Same general formula.
- Similar chemical properties.
- Each member differs by -CH2-.
- Gradually changing physical properties (e.g. boiling point, density).

CRUDE OIL

A complex mixture of hydrocarbons.

- Formation: From biomass (plants/animals) over millions of years under high pressure and temperature.
- Finite Resource: Formed much slower than it is used.

ALKANES

Saturated Hydrocarbons:

- Single C–C bonds only.
- General Formula: C_nH_{2n+2}.
- · Unreactive but undergo combustio

First Four Alkanes:

- Methane: CH₄ (gas)
 Ethane: C₂H₆ (gas)
- Propane: C₃H₈ (gas)
 Butane: C₄H₁₀ (gas)

Alkane	Molecular formula	Structura
Methane	CH ₄	
		h
		h
Ethane	C_2H_6	н н
		н-с-с-н
		нн
Propane	C ₃ H	H ·
		н—
		Ĥ
Butane	C ₄ H ₁₀	н н н
		H-C-C-C-
		H H E

FRACTIONAL DISTIL & PETROCHEMICAL

- Crude oil is a mixture of diff hydrocarbons, separated r nal distillation.
- Fractions have similar c' similar boiling points.
- Larger molecules have higher condense at the bottom.
- Smaller molecules have lower boiling point condense at the top.
- · Most fractions are alkanes (single bonds).

HOW FRACTIONA DISTILLATION WORKS

- Column has .. 'hot at the bottom, cool a.
- Vapours rise, cool and conreach their ' ints.
- Larger ' her b.p.) conactower
- Smo b.p.) condense

CRL FRACTION Small molecules Low boiling point Very volatile Flows easily Puel for aircraft Bitumen Bitumen for roads and roofs Does not figuite easily Does not figuite easily

**MISTRY Carbon Carbon

PROPERTIES OF HYDROCARBONS

TTON

٩d

``'DS IN PHYSICAL
'ERTIES

Jepend or Viscosity flow) |
Flamma se of burning) |
Colour ness of burn |
as fuels

_,τ

- in. with molecule size |
 Stronge: intermolecular forces
 ad more energy to overcome
- of flow | High viscosity =
 .k, flows less easily |
 creases with chain length
 .more intermolecular forces) |
 Long-chain hydrocarbons used
 as lubricants to reduce friction

FLAMMABILITY

 Smaller hydrocarbons | More flammable, ignite easily | Release more energy when burned

COMBUSTION OF HYDROCARBONS

 Burn in air to form water and carbon dioxide | Oxidation: Hydrogen → water | Carbon → carbon dioxide

Examples:

- Methane: CH₄ + 2O₂ → CO₂ + 2H₂O
- Octane (Petrol): 2C₈H₁₈ + 25O₂
 → 16CO₂ + 18H₂O

TIP:

Balance elements in order:
 Carbon | Hydrogen | Oxygen | If
 oxygen is a fraction, multiply
 all coefficients by 2

CRACK

DROCARBONS & ALKENES

Cracking ⇒ c rts long-chain hydrocarbons (low demand) to short-chain igh demand).

.d: Supply = production from crude oil | Demand = customer hains (e.g. petrol, kerosene) have high demand | Long chains ruer on, have low demand.

, OF CRACKING

atalytic Cracking: Heat to $470 - 550^{\circ}\text{C} \Rightarrow \text{Vapourise} \Rightarrow \text{Pass over hot catalyst}$ (e.g. aluminium oxide) \Rightarrow Thermal decomposition.

Thermal Cracking: Higher temperatures and pressures → Produces more | kenes → Involves steam and heat.

TS OF CRACKING

anes (saturated, single bonds) + Alkenes (unsaturated, double bonds).

• .ample: Decane $(C_{10}H_{22}) \Rightarrow Octane (C_8H_{18}) + Ethene (C_2H_4)$.

vriting equations for cracking

- · Atoms on each side must balance (Law of Conservation of Mass).
- Example: C₂₀H₄₂ → C₁₈H₃₈ + C₂H₄ | Unknown product is an alkane (CnH₂n+₂).

ALKENES -Homologous series with at least one C=C double bond.

 General formula: CnH₂n | More reactive than alkanes | Used in polymers and as starting materials.

TEST FOR ALKENES - Bromine water test → Alkane: Stays orange (no reaction) | Alkene: Decolourises (reaction with double bond).

ENERGY

ENERGY STORES & SYSTEMS

A system is an object or group of objects.

 Energy within a system can change when the system changes.

Systems can be:

- Open → Energy and matter can enter or leave.
- Closed → Only energy can enter or leave.
- Isolated → Neither energy nor matter can enter or leave.

F ENERGY STORES

- Energy is stored in different ways depending on the object's state:
- 1.Kinetic → Moving objects
- 2.Gravitational Potential → Raised objects in a gravitational field
- Elastic Potential → Stretched or compressed objects
- 4.Thermal → Hot objects
- 5.Chemical → Stored in fuels, food, batteries
- 6.Magnetic → Interacting magnets or magnetic materials
- 7.Electrostatic → Interacting electric charges
- 8. Nuclear → Energy within atomic nuclei

ENERGY TRANSFER PATHWAYS

Energy is transferred between stores through:

- Mechanically → By a force doing work (e.g. pushing, pulling)
- Electrically → By a moving charge (e.g. in circuits)
- Heating (by particles) → From hott cooler objects (conduction)
- Heating (by radiation) → By electromagnetic waves (e.g. light, infrared)

ENERGY TRANSFER EXAMPLES

← MOVING OBJECT HITT.

OBSTACLE

vibrations

Chemical store (fuel) → Kinetic (moving car) → Thermal store (we surroundings, dissipated)

- Also: Friction → thermal (air, ground, Sound → air vibrations
- ⇔ VEHICLE ACCF TNG
 Chemical store
 (speeding up)
- VEHICLE G DOWN
 Kinetic stor a car'
 (brakes, grou
 Also: Frictio.
- BOILING WATER IN A KETTLE Electrical store (mains) → Thermal (heating element) → Thermal store (w.)

KINETIC ENERGY (Ek)

Energy an object has due to it mass and speed.

Energy Transfer:

- Speeds up → energy transferred to kinetic stor
- Slows down → energy transferred away from k₁.
 store

☑ EQUATION:

- $E_k = 1/2 \times m \times v^2$
- E_k = Kinetic energy (Joules, J)
- m = Mass (kilograms, kg)
- v = Speed (metr second, m/s)

CALCUL.

Car travelling (2500 kg) ac . m/s:

• $E_k = 1/2 \times 7$ 500,000

Apple fallir

• $E_k = 1$ 6 -

FTIP:

- Sqi red → Cr
 m'
- Rear key skill in regularly.

En din an c objec 'k is done to stretch sit.

Transfer:

'ased → Energy cransierred

m elastic potential

🗾 EQUA.

- $E_e = 1/2 \times .$
- E_e = Elastic pocc .l energy

nt (Newtons

• ension (metres, m)

IPLE CALCULATIONS:

ng (3 N/m) stretched by m:

 $_{2} = 1/2 \times 3 \times 0.5^{2} = 0.375 \text{ J}$ ing (5 N/m) compressed by

 $2 \times 5 \times 0.2^2 = 0.1 \text{ J}$ 3 (250 N/m) extended by0. 4 m:

 $E_e = 1/2 \times 250 \times 0.014^2 = 0.025 \text{ J } (2 \text{ s.f.})$

IP:

Convert to metres if given in cm.

Make sure the spring has not exceeded its limit of proportionality for this equation to be valid.

YAVITATIONAL POTENTIAL JERGY (Ep)

Energy in an object due to its height vitational field.

Energy T
'iftr Energy tr .d to
al potent

Energy erred away

EQUATIO.

- · Ep = m × g × h
- E_p = Gravitational potential energy (Joules, J)
- m = Mass (is, kg)
- g = Gravit ield strength (Newtons oer kilog g)

JAL FIELD STRENGTH:

- tu. kg
- Moon: 1. /kg (less than Earth → easier to lift)
- Gas Giants (e.g. Jupiter): ~25 N/kg (more than Earth → harder to lift)

EXAMPLE CALCULATIONS:

- Man (70 kg) climbing 3 m stairs (g = 9.8 N/kg):
 - E_p = 70 × 9.8 × 3 = 2058 J Annonball (5 kg) lifted 56 m (g = 10 J/kg): E_p = 5 × 10 × 56 = 2800 J
- Book (0.5 kg) lifted 1.5 m (g = 10 N/kg):
- $E_p = 0.5 \times 10 \times 1.5 = 7.5 \text{ J}$

📝 TIP:

p.

а

- Use g = 9.8 N/kg unless stated otherwise.
- Remember to convert mass to kg if given in grams.

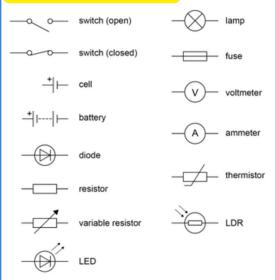
THERMAL ENERGY (DE)

Energy in the thermal store of an object, related to its temperature.

SPECIFIC HEAT CAPACITY (c)

The amount of energy needed to raise the temperature of 1 kg of a substance by 1°C.

- Low Specific Heat Capacity: Heats up and cools down quickly (e.g. copper, 390 J/kg°C).
- High Specific Heat Capacity: Heats up and cools down slowly (e.g. water, 4200 J/kg°C).


EQUATION:

- $\Delta E = m \times c \times \Delta \theta$
- ΔE = Change in thermal energy (Joules, J)
- m = Mass (kilograms, kg)
- c = Specific heat capacity (J/kg°C)
- Δθ = Temperature change (degrees Celsius, °C)

EXAMPLE CALCULATION:

- Heat 2.00 kg of water from 10°C to 100°C (c = 4200 J/kg°C):
- $\Delta\theta = 100 10 = 90^{\circ}C$
- ΔE = 2.00 × 4200 × 90 = 756,000 J
- **TIP:** Units Matter: Always check that mass is in kg and temp. change is in °C.
- You do not need to memorise specific heat capacity values, they will be given in exams.

- Cell/Battery: Provides potential difference (battery = 2 or more cells)
- Switch: Turns circuit on (closed) or off (open)
- Fixed Resistor: Limits current, fixed resistance
- Variable Resistor: Adjusts resistance (e.g., volume controls, dimmer switches)
- Thermistor: Resistance changes with temperature ($\sqrt{\text{temp}} = \uparrow \text{resistance}$)
- LDR: Resistance changes with light intensity $(\forall \text{ light} = \land \text{ resistance})$
- Diode: Current flows in one direction only (used for AC to DC conversion)
- LED: Emits light when current passes through (e.g., indicators)
- Ammeter: Measures current (connected in series)
- Voltmeter: Measures potential difference (connected in parallel)

REQUIRED PRACTICAL

C EQUIPMENT LIST

- Power Supply → Source of potentia.
- Wires → Connect all components in the
- Crocodile Clips → Connect different lengths c. resistance wire
- Ammeter → Measure current (A)
- Voltmeter → Measure potential difference (V)
- Thin Resistance Wire → Measure resistance at different lengths
- Metre Ruler → Measur

EFFECT OF WIRE LENGTH .

NCE

Q VARIABLES

- Independent → Length of wir
- Dependent → Resistance (R)
- Control → Potential difference of p supply, wire temperature

📝 METHOD

- 1. Set up the c power supply, ammeter, voltmeter stance wire.
- dile clip at 1 2. Attach of at a cho: :h (e.g. 10
- 3. Record t tial di
- current (1
- 4. Move the s along the (e.g. 20 cm, speat measur
- 5. Calculate resistance using R = V / I f lenath.
- 6. Plot a graph of resistance (y-ax. wire length (x-axis).

CHARGE & CURREN

CURRENT AND CHARGE

- Current = Flow of elect charge
- Measured in amperes an ammeter

charge flov

t

ı

Formula: <u>Q = I × t</u>

- · Charge (Q) in coulombs (C)
- Current (I) in amperes (A)
- Time (t)

in seconds (s)

📝 WORKED F "E (CHARGE)

A current through a wire f charge flows

Step 1: Write down the quantities

- Curre
- Tim

Step

- Ste astitute th
- $\times 200 = 6$

CE

··nit

The E.

- charge acru.
- Measured in volts, ~ (connected in
- 2 (W) in jour coulombs (C)

°E)

used to move so c or com or through a cuit, what is the potential

> rce? vn the known

qu.

- Wor. = 400 7
- Charge (L. 30 C

ormula

Jte the values -100 80 = 5 V

CONVENTIONAL CURRENT

ND ELECTRON FLOW

- Conventional current flows from positive to negative 🔁
- Electron flow (actual flow) is from negative to positive 🔄 urrent is the same at all points in a closed loop (e.g. a series circuit)

Ammeter A 10 20 30 40 50 60 70 80 90

CURRENT, RESISTANCE & POTENTIAL

ENCE

- stance 1 -ition to it ol: R. Me Λ Ohms (Ω)1 = 1 volt pere (1 V / A) ugh a s on its
- , the potential differen. ross it. High resistant = Low current (e.g.,
- thin, lang wires, insulators) Low ce = High current (e.g., thic' wires, good cov

R (Potential difference = c × Resistance)

- e rearranged as:
- · I = V/R
- R = V/I

WORKED EXAMPLES

📝 Example 1:

• Problem: A resistor of 10 Ω has a current of 0.3 A flowing through it. What is the potential difference?

Calculation:

- $V = I \times R$
- $V = 0.3 \times 10 = 3 V$

📝 Example 2:

- Problem: A voltmeter reads 6.0 V and the resistor is 4.0 Ω . What is the current through the circuit?
- Calculation:
- I = V/R

TIPA Voltage and potential difference are the same thing - both are measured in volts (V).

ELECTRICIT

PRACTICAL CONT.

ANALYSIS OF RESULTS

- The graph should be a straight line through the origin → resistance is directly proportional to wire length.
- Longer wires have higher resistance as electrons collide more frequently with metal ions.

EVALUATING THE EXPERIMENT

- Systematic Errors → Ensure crocodile clip is at 0 cm to avoid zero error | Check meters start at O
- Random Errors → Use low currents to avoid heating the wire | Allow wire to cool between readings | Repeat for reliable results

A SAFETY CONSIDERATIONS

- Avoid touching live wires risk of burns if wire overheats
- Turn off power if burning is detected
- Keep liquids away from the equipment

DENSITY

Density = mass per unit volume

Formula $\Rightarrow \rho = m / V$

- $\rho = \text{density} (kg/m^3) \mid m =$ mass $(kg) \mid V = volume (m^3)$ Key Points
- Low density ⇒ small mass in large volume | High density ⇒ large mass in small volume E.g. feathers vs lead (same

volume) | air balloon vs metal bar (same volume)

- Gases < Liquids < Solids (in density) → particles are more spread out in gases
- Ice is less dense than water (unusual!)

Unit Conversions

- g/cm^3 to $kg/m^3 \Rightarrow \times 1000$
- kg/m^3 to $g/cm^3 \Rightarrow \div 1000$
- $1 \text{ cm}^3 = 1 \times 10^{-6} \text{ m}^3$

DENSITY FORMULAS

Rearranged:

- $m = \rho \times V$
- $V = m \div \rho$

To calculate volume (when not given):

- ➤ Cube = d³
- ightharpoonup Cylinder = $\pi r^2 l$
- \triangleright Sphere = $(4/3)\pi r^3$

APPROX. DENSITIES (kg/m³):

Air > 1.3

Wood > 300 to 800 (varies) Water **♦** → 1000

Granite (stone) → 2700

- § If density > 1000 kg/m³ → sinks in water
- § If density < 1000 kg/m³
 </p> → floats in water

EXAMPLE 🥜

- A metal block has:
- m = 73 kg | dimensions = $0.85 \times 0.5 \times 0.04 \text{ m}$
- $V = 0.017 \text{ m}^3$
- $\rho = 73 \div 0.017 = 4294 \Rightarrow$ rounded = 4300 kg/m³

TIPS 🎯

 Use formula triangle for rearranging → cover the variable you want

Don't confuse:

- ♦ Mass = amount of matter (kg)
- ◆ Weight = force due to gravity (N)
- ◆ Density = rlume (kg/m^3)

Visualise:

- ♦ More , in less ensity space = 1
- + Compr Expanding
- Common mis up cm3 & m3 > air. convert properly
- In state change questions: mass stays the same, even if volume or pressure changes

SOLIDS, LIQUIDS & GASES

THE PARTICLE MODEL

All matter is made of tiny particles called atoms

- Explains:
- → States of matter (solid, liquid, gas)
- → Physical properties e.g. density

- 🔁 Particles: closely packed 🤒 | vibrate only | strong forces
- Properties: fixed shape & volume | highest density

LIQUIDS

- Particles: still close but irr past each other 🚭 | weaker 🤈
- Properties: flows, takes contain. fixed volume | medium density

GASES

- 🛂 Particles: far apart ሾ randomly | almost no /
- Properties: no fixe easily compressible

or volu density

PARTICLE ENERL

Solids > high density low energy

arrangement.

- 1

Liquids → medium density

G

in place | Liquias move past ove in all directions

CHANGES OF _

Physical change → revers..

r of particles 2arranged

Melting -"ing/F

Liquid

on - Liquid > Gas

olid → Gas 20

_γuid → Solid • Cc Gas → Liquid

[Energ red to break bonds (heating) c co form bonds (cooling).

EPTIONS MISL

don't oreak apart → only ies do that ot change – unless a gas

· IVIL escape itainer. V Alw

differ

r to the same substance in a (e.g., ice, water, steam = H_2O).

REQUIRED PRACTICAL

PRACTICAL **OBJECTS**

JULARLY SHAPED

teps:

12051

→ digital balance insions → ruler / caliper /

olume using formula (e.g. V = l

 $\times w \times h$

Convert to SI units (kg, m³)

Use $\rho = m \div V$

Variables:

- IV = Shape / volume → DV = Mass
- 🔗 PRACTICAL 2 IRREGULARLY SHAPED **OBJECT**S

<teps:

Measure mass

Fill Eureka can to just below spout Place empty measuring cylinder under

Lower object → collect displaced water Volume of water = volume of object Use $p = m \div V$

Variables:

IV = Object shape/mass → DV = Volume of displaced water

🔗 PRACTICAL 3 – LIQUIDS

Steps:

Place empty cylinder on balance → record mass

Add known volume of liquid → record new mass

Subtract to find mass of liquid Use $p = m \div V$

Variables:

- IV = Volume of liquid > DV = Mass of cylinder
- M ERRORS

Systematic:

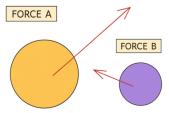
X Balance not zeroed → ✓ Always zero before use

Random:

X Inaccurate length readings → ✓ Take repeats & average

X Splashing from Eureka can → 🗸 Lower object carefully

SCALARS & VECTORS


- Scalars → have magnitude only (e.g. speed, distance, mass)
- Vectors > have magnitude & direction (e.g. velocity, displacement, force)

Key comparisons

- Speed ⇔ Velocity | Distance ↔ Displacement | Mass ↔ Weight
- → Scalars = no direction | Vectors = include direction

VECTOR REPRESENTATION

- Vector shown as an arrow →
- Length = magnitude | Direction = direction of quantity
- E.g. Force A > Force B in magnitude | A points up-right, B points up-left

SCALAR VS VECTOR CONFUSION

- Displacement < Distance (displacement = straight line, distance = total path)
- Velocity ≠ Speed (same speed, different direction = different velocity)

RESULTANT FORCE - SAME DIRECTION

- Forces add if in same direction ⇒
- E.g. 2N + 3N → Resultant = 5N (same direction)

FORC

RESULTANT FORCES

Resultant force = single overall force from combining all individual forces on a body Also known as → net force or unbalanced force | AVOID COMMO. AISTAKES

Balanced Forces:

- ⇒ Equal and opposite
- e.g. weight down = nor. ⇒ resultant force = 0

force up

Unbalanced Forces:

- → Forces don't cancel → object ω in direction of larger force
- e.g. Person A pulls 80 N left, Person 100 N right > rer !tant = 20 N right

CALCULATING

T FORCE:

- Same dire ud forces Opposite is > subtrar
- osite > rr If equal (balance
- Always s N to the ri

FREE BODY DIAGRAMS

- Show all forces on an object
- Each force = arrow (→) scaled (> labelled > shows direction

CONTACT & NON-CONTACT FORCES

 A force = a push or pull r interaction with anothe

TYPES OF FORCES

- Contact = objects > e.g. friction, tension, air resistance, reaction force
- Non-contact = no contact needed → e.g. gravity, electrostatic, magnetic

EFFECTS OF FOY

Forces can speed 1 direction |

EXAMPLES OF CHANS

- Thrust → changes speeu
- Gravita+ ction → chanc
 - Cor

CONT

RCE SUN → opposes

- < rub) n air
- string Reaction 1c.
- surface (normal c.

TOCE SUMMAK.

Live force

VTON'S

hape

repulsive.

ch. Magr active/repulsive

betwee,

"hen two objects interact > they rual and opposite forces on

' (gravitational) | Cha. contact)

ity" → use raction nd resistance" or 'essure" > correct = air

RCES AS VECTORS

cance (drag)

Forces are vector quantities → have both magnitude (N) and 1irection

¿ PAIRS (INTERACTIONS)

Then two objects interact, they exert equal & opposite forces (Newton's 3rd Law).

Examples:

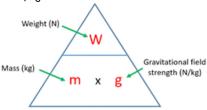
- Pushing rock → person pushes rock 🔄 rock pushes back 🔁
- Standing on ground → foot pushes down 🛂, ground pushes back up 🚹
- All force pairs shown as arrows in diagrams.

GRAVITY, WEIGHT & MASS

MP ount of matter in an object direction \ | Measured in kg | Sc same ev ·г (e.g. Earth

> Forc gravity acting downwards) | (N) د

a newtonmeter (spring be) | Changes with location


GRAVI AL FIELD STRENGTH

- g | Measured in N/kg For
- F ..8 N/kg | Moon ≈ 1.6 y → 1 weight

MASS-GRAVITY NSHIP

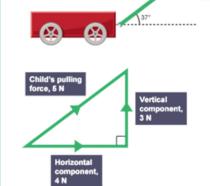
W = 1. . 9

W = weight in N | m = mass in kg |g = gravitational field strength in N/ka

EXAMPLES

- 1. Calculate weight
- Mass = 70 kg | $g = 9.8 \text{ N/kg} \Rightarrow$ $W = 70 \times 9.8 = 686 N$
- 2. Calculate mass from weight
- Weight = $98 \, \text{N} \, \mid \, g = 9.8 \Rightarrow m =$ $98 \div 9.8 = 10 \text{ kg}$

MEASURING MASS VS WEIGHT


- Mass → measured with balance (compares mass to known mass)
- Weight → measured with spring balance/newtonmeter (measures

RESOLVING FORCES

Breaking a single force into components at right angles (horizontal and vertical) -> Makes it easier to analyse forces acting at angles

- e.g. 5 N force at 37°
- → Horizontal = 4 N
- → Vertical = 3 N

→ Together have same effect as original

TRANSVERSE & LONGITUDINAL WAVES

Waves transfer energy, not matter → 2 types:

- Transverse ⇒ vibrations perpendicular to energy transfer
- Longitudinal → vibrations parallel to direction of energy transfer

X TRANSVERSE WAVES

Definition: Vibrate at right angles (90°) to direction of energy transfer → e.g. EM waves, ripples, S-waves, guitar strings

- Crest = highest point | Trough = lowest
- Can move through solids, liquid surfaces, and vacuum (EM only)
- Seen on a rope → move hand up/down →
 wave travels across

O LONGITUDINAL WAVES

Definition: Vibrate parallel to energy transfer → e.g. sound, P-waves, pressure waves

- Compression = close particles |
 Rarefaction = spread out
- ◆ Travel through solids, liquids, gases → not vacuum
- Seen in a slinky ⇒ push/pull coil ⇒ wave travels forward

REPRESENTING WAVES

Transverse: drawn as continuous curves
W Longitudinal: drawn as lines ⇒
compressions close, rarefactions spre

WAVEFRONTS

- Wavefront = top view of wave
- Transverse: 1 line = crest or trough | Longitudinal: 1 line = compression or rarefaction
- Close lines = short wavelength → Far apart = long wavelength

TIP✓ Know the difference

- → wavefront diagram (liv
- → wave shape diagram (sia.

WAVES

WAVE MOTION

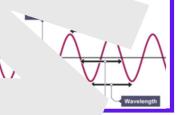
 Waves transfer energy, not ma through a medium → particles but remain in the same place

AMPLITUDE (A)

- Maximum displacement fr position to peak/trough.
- Measured in metres (m) ⇒ bigge, amplitude = more energy.

WAVELENGTH (λ)

- Distance between same points on two adjacent waves (e.g. peak to peak or trough to trough
- Measured in me
- Transverse: cr trough
- Longitudinal: centre of conext compression


FREQUENCY

- Number int each second
- Unit = (Hz) → 1 H ve per seco
- Hir ncy > mr gy

TIME +

• Time for one or one full cycle.

- seconds (s) T → T = 1 ÷ f 'n H2, T = time

TING WAVE SPEED

YEEN TWO POINTS

- - ring ...

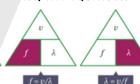
 Je time

 J = distance ÷ time

JD 2: USING AN OSCILLOSCOPE

2 microphones ~5 m apart
asured with tape measure) →
nect to oscilloscope → loud sound
ar 1st mic (e.g. clap) → oscilloscope
's time delay between microphones
1 of sound = distance between
time between peaks

ALT SCILLOSCOPE METHOD — USING NAL GENERATOR


Attach signal generator to speaker → onnect to 2 microphones + oscilloscope → move one mic until waves align (1 wavelength apart) → Measure distance (λ), use known frequency (f)

• \Rightarrow Speed = $f \times \lambda$

WAVE EQUATION

- Wave Speed = Frequency ×
 relength
- ave speer '^/s) → how fast gy is trar requence number of ves pass econd) → distance nding points on
- Appu ve types (transverse & jitudinal)

☑ REA 'STNG THE EQUATION

WUZKED EXAMPLE

A wave has speed 0.12 m/s, and a time period of 4 s

- a) Find frequency
- · b) Find wavelength

Part (a):

• $T = 4 \text{ s} \Rightarrow f = 1 \div T = 1 \div 4 = 0.25$ Hz

Part (b):

- v = 0.12 m/s f = 0.25 Hz
- $\lambda = v \div f = 0.12 \div 0.25 = 0.48 \text{ m}$

- ✓ Use correct symbols: v, f, λ (not L or W)
- Watch for kHz → 1 kHz = 1000 Hz
- ✓ If units are in cm, convert speed to cm/s

MEASURING CONT.

MEASURING SPEED OF WATER WAVES

- In calm water → measure distance between 2 people with tape measure → one creates ripple → second times ripple travel using stopwatch
- → Repeat 10× for average
- → Wave speed = distance ÷ time

TIP – ACCURACY

- Most accurate ⇒ oscilloscope (automatic timing)
- Least accurate ⇒ direct timing (short interval + human reaction error)

Z

MR. ZEE'S RESOURCES