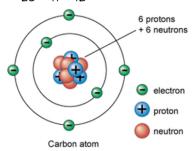


CONTENTS


1	ATOMIC STRUCTURE & PERIODIC TABLE	1
CHEM PAPER	BONDING, STRUCTURE, MATTER	5
	QUANTITATIVE CHEMISTRY	9
	CHEMICAL CHANGES	12
	ENERGY CHANGES	17
CHEM PAPER 2	RATE & EXTENT OF CHEMICAL CHANGE	19
	ORGANIC CHEMISTRY	22
	CHEMICAL ANALYSIS	26
	CHEMISTRY OF ATMOSPHERE	28
	USING RESOURCES	30

ATOMS & ELEMENTS

- All substances ⇒ made of atoms (building blocks of matter)
- Atoms contain: protons (+1) / neutrons (0) / electrons (-1)
- Protons & neutrons in nucleus ⇒ most of atom's mass
- Electrons orbit nucleus in shells ⇒ tiny mass

ATOMIC STRUCTURE

- Atomic number = no. of protons = no. of electrons (in neutral atom)
- Mass number = protons + neutrons
- To find neutrons ⇒ mass number
 atomic number
- 🧠 Example:
- Sodium (Na): atomic number = 11 / mass number = 23 → neutrons = 23 - 11 = 12

Subatomic Particle	Relative Charge	Relative Mass
Proton	1	1
Neutron	0	1
Electron	-1	Negligible (1/2000)

ELEMENTS & SYMBOLS

- Element = substance with only type of atom ⇒ same no. of protons
- Atoms of same element → sai. atomic number
- Symbols ⇒ 1 or 2 letters (first = capital, second = lowercase)
- E.g. Carbon = C / Oxygen = O / Sodium = Na / Iron = Fe
- Some elements exist as molecules
 → H₂, O₂, N₂, F₂, Cl

PERIODIC TABLE (

- Organises element number
- Groups (columns) ⇒ no electrons
- Periods (rows) ⇒ no. of ele shells
- Know r ?s/symbols of first 2.
 elem
- Le in:
- Gre Lali metals
- G halogens
- G noble gr

COMPOUNDS

- Atoms react → fixed ratios → full outer shells → new substances = compounds
- A compound = 2+ elements chemicall combined ⇒ cannot be separated by physical means
- Properties of compounds ≠ proper elements they're made from
- · Chemical formula shows ratio of atoms
- · Example:
- H₂O → 2 hydrogen, 1 oxygen
- NH₃ → 3 hydrogen, 1 nitrogen

MOLECULE OF AMMONIA

• $NH_3 = 1$ nitrogen atom 'to 3 hydrogen atoms

COMMON MISTAKE

Elements = pure substance=
 also pure (NOT impure)

NAMING COMPOU' METALS (Ionic)

- Metal name
- e.g. Pbs --- olphide | M magne
- CuSO₄ sodium carbo
- NaNO₃ = sodium n.
 N = sodium nitrite
- Fewer oxygen

NON-

- Use , 2.g. NO = ν. 2ποχίαε , 2π tetrachlo

`-OH =

NON-

nt)

names of HCl, H2204, HNO3,

HALF/IC.

ATIONS

 Jens to electrons in a reaction
 nt only half the process:
 e species gains electrons (reduction)
 nother species loses electrons
 oxidation)

xamples:

2+ + 2e⁻ → Pb (reduction) → Br₂ + 2e⁻ (oxidation)

IC EQUATIONS

- Snow only the ions that react in a solution
- Remove spectator ions (ions that don't change during the reaction)
- Full equation:
- HCl + NaOH → NaCl + H₂O
- Ionic equation:
- H⁺ + OH⁻ ⇒ H₂O
- Na⁺ and Cl⁻ are spectator ions (present on both sides, unchanged)

SOUATIONS

RD EQUATIONS

E.g. sor''ım hydroxide + hydrochloric acid → chloride + water

- Keyr
- Rev left side roducts =

) = "form Jces"

'cataly z written

Exami

10

- CO₂ ⇒ , gen
- H₂SO₄ ⇒ 2 n₃ , 1 sulfur, 4 oxygen
- Ca(OH)₂ ¹ calcium, 2 oxygen, 2 hydroge ≥t applies to both O and H)

LONS

al formulae instead of full

- H (aq) + HCl (aq) → NaCl (aq)
 + H₂
- Include state symbols: (s), (l), (g), (aq)
- Write non-metal molecules as pairs: H_2 , O_2 , Cl_2 , etc.

BALANCING EQUATIONS

- · Atoms must be equal on both sides
- Balance by placing numbers in front of formulas (not changing subscripts!)
- Balance 1 element at a time ⇒ check ⇒ repeat

Word Equation:

 aluminium + copper(II) oxide → aluminium oxide + copper

Unbalanced Symbol Equation:

Al + CuO → Al₂O₃ + Cu

Balanced Symbol Equation: • 2Al + 3CuO → Al₂O₃ + 3Cu

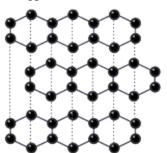
1.Al: 2 on left, needed for Al₂ 2.0: 3 on right (in Al₂O₃) \Rightarrow need 3 CuO

3.Cu: 3 on right to match CuO

Word Equation:

- magnesium oxide + nitric acid > magnesium nitrate + water
- Unbalanced Symbol Equation:
- MgO + HNO₃ → Mg(NO₃)₂ + H₂O
- Balanced Symbol Equation:
- MgO + 2HNO₃ \Rightarrow Mg(NO₃)₂ + H₂O Check:
- Reactants ⇒ 1Mg, 2H, 2NO₃
- Products → 1Mg, 2H, 2NO₃
- 🗸 Balanced

TTPS


X Don't change small numbers in formulas (e.g. H₂O → H₂O₂)

Only change big numbers in front of substances

ATOMIC STRUCTURE & PERIODIC TABLE

GRAPHITE

- Each carbon ⇒ 3 covalent bonds ⇒ forms layers of hexagons
- Layers held by weak forces ⇒
 no covalent bonds between
 them ⇒ soft & slippery ⇒ used
 as a lubricant
- High melting point > strong covalent bonds within layers > need lots of energy to break
- 1 delocalised electron per carbon > moves freely > conducts electricity & thermal energy

TIP - Graphite ≠ lead. Pencil "lead" is graphite.

<mark>USES OF</mark> NANOPARTICLES

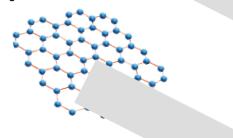
Catalysts – large surface area makes reactions faster using smaller quantities.

Medicine – drug delivery enter cells directly).

Electronics – conductors circuits and chips.

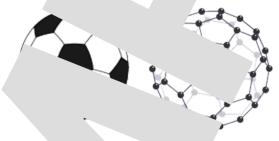
Antibacterial – silver nanoparticles in wound dressings, surgical masks, deodorants.

Cosmetics – sunscreens,
moisturisers (TiO₂ t
used for coverage`
Coatings & p
durability and scrac


🔥 RISKS & CONCERNS

- May enter the body or environment due to tiny s
- Could r alyse harmful rear r produce toxic si inside cells.
- I m effects on '
- ces.
 ti sarly
 labe.
- Some worry nanoparticle damage cells or accurately organs or ecosysten

GRAPHENES & FULLERENES

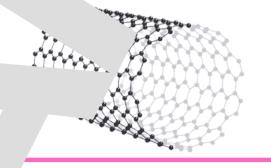

GRAPHENE

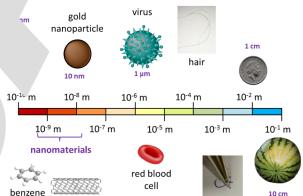
- One atom thick sheet → hexagon structure
- Strong covalent bonds ⇒ very + light
 ⇒ used in composites
- Delocalised electrons ⇒ conductorough structure ⇒ used in electro.

FULLERENES (e.c

- Hollow sph/ (+ pentage
- Cage mc surface
 interr
- > drug | Large

RES


CARBON .


• Cylindric

nes → high length:diameter

'rermal energy → used

h tensile ... sed to strengthen ... 'Is (e.g. tennis rackets)

5 µm

full stop

carbon

nanotube

SIZES OF PARTICLES & THEIR POERTIES

& CLASSTFICATION

articles ruped by diamete coarse es (PM₁₀):

J nm (dust) es (PM_{2.5}):

/ nm

Study of these = Nanoscience; applications = Nanotechnology.

than atoms.

♠ SURFACE AREA TO VOLUME RATIO (SA:V)

- As particle size ↓, surface area:volume ratio ↑ (by a factor of 10 if size ↓ ×10).
- High SA:V = different properties from bulk material.

Means:

- → Smaller quantities needed for same effect.
- Greater reactivity useful in catalysis and surface chemistry.
- ⇒ Example: Fullerenes (carbon nanoparticles) act differently to graphite or diamond.

Formula:

- SA:V = Surface Area ÷
 Volume
- Example ratios:
- 1 cm cube = 6:1 | 2 cm cube = 3:1 | 3 cm cube = 2:1

T PROPERTIES

- · Very high SA:V ratio
- Can have different physical and chemical behaviours than bulk materials
- Often strong, conductive, transparent or catalytic depending on substance

REQUIRED PRACTICAL

- Determine the reacting volumes of a strong acid and strong alkali by titration.
- Purpose:
- To calculate the concentration or volume needed for neutralisation.
- Used to analyse acid-base reactions and sometimes redox reactions.
- Can also be used to prepare salts.

Volumetric pipette (25 cm³) | Pipette filler |
 Conical flask (250 cm³) |
 Burette (50 cm³) | Clamp stand | Small funnel | White tile | 0.1 mol dm⁻³ NaOH |
 Unknown H₂SO₄ | Indicator (phenolphthalein / methyl orange)

METHOD

Use pipette + filler to transfer 25 cm³ of alkali into a clean conical flask.

Add a few drops of indicator, place flask on a white tile.

Fill the burette with acid using a funnel, remove funnel before titration, and record the starting volume.

Add acid slowly from the burette while swirling the flask to mix.

As the end-point nears (colour about to chr acid drop by drop indicator change permanently.

Record the final reading to the nearest cm³.

Repeat the titration unc you get corrordant results (within 13).

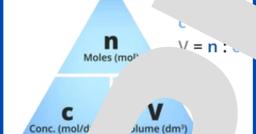
C he mean titre usin dant values on!

♥ TIPS

(avo

- ✓ Only ant titres to calculate one mean.
- ✓ Write readings to 2 de places.

TITRATION CALCULATIONS


Once the average titre (mean volume) is known from the titration:

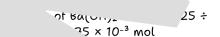
Write the balanced equation for threaction.

Calculate moles of the known substance:

Use the mole ratio from the balanced equation to find moles of the unknown substance.

Calculate concentration of the unknown solution

WORKED EX.


Question:

• 25.7 -m³ of 0.15 mo, hyr tralises 12.80 n' Find trice

Find c acid.

Equation:

• $Ba(OH)_2 + 2$ $a(NO_3)_2 +$

Step 2:

• Moles of . $\times 10^{-3} \times 2 = 7.5 \times 10^{-3}$ mol

 $NO_3 = (7.5 \times)0) = 0.59$

Burette containing acid

Clamp stand

Known volume of alkali containing a few drops of indicator

YONG & WEAK ACIDS

ong acir

⇒ Dissc mpletely in water ⇒ Hic | Low '1-3) : HCl, H₂ O₃ Cl⁻ | H⁺ +

Weak aciu.

- → Dissociate , y in water (

 reversible)
- → Equilib s to the left
- > Exam ,COOH ⇌ H+ +

.h alkalis to form salts: NaOH → CH₃COONa +

 TIP: Strength = how well acid dissociates, not how much is present

CONCENTRATION VS STRENGTH

- Concentration = how much acid is in a given volume (mol/dm³)
- Strength = how much of the acid ionises (dissociates)
- You can have:
- A dilute strong acid (low mol/dm³, fully ionised)
- A concentrated weak acid (high mol/dm³, partially ionised)
- pH depends on [H⁺], not just concentration

HYDROGEN ION CONCENTRATION

- More H⁺ ions → lower pH
- Fewer H⁺ ions ⇒ higher pH
- A concentrated acid has more acid particles per dm³
- A dilute acid has fewer acid particles per dm³
- Dilute HCl can still be more acidic than concentrated CH₃COOH
- (because HCl fully dissociates, CH₃COOH does not)
- Use pH to measure effective acidity (based on H⁺ actually in solution)

RELATIVE ACIDITY (pH SCALE IS LOGARITHMIC)

- Each pH change of 1 = ×10 difference in [H+]
- → pH 3 is 10× more acidic than pH
- → pH 2 is 100× more acidic than pH
 4
- Formula:
- H^+ conc. factor = 10^x
- (x = final pH starting pH)
 - Example: pH $7 \Rightarrow$ pH $4 \Rightarrow$ H⁺ increases by $10^3 = 1000 \times$

ENERGY TRANSFER IN REACTIONS

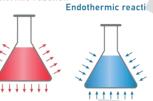
- Energy is conserved ⇒ not created or destroyed, only transferred
- Measured with thermometer → indicates heat flow
- If energy released → products have less energy than reactants > exothermic
- If energy absorbed → products have more energy than reactants > endothermic

EXOTHERMIC VS ENDOTHERMIC

- Exothermic → heat out → temp $\uparrow \Rightarrow e.g.$ combustion | neutralisation | respiration
- Endothermic → heat in → temp → e.g. thermal decomposition | photosynthesis | citric acid + NaHCO₃

ENERGY FLOW SUMMARY

- Exothermic → surroundings get hotter → system energy ↓
- Endothermic → surroundings get cooler → system energy ↑


EXAMPLES

- Exothermic → self-heating cans | hand warmers
- Endothermic → cold packs

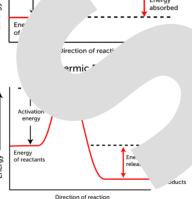
TIP

- · Use temperature change of surroundings to identify reaction type
- 1 temp = exothermic | ↓ temp = endothermic

Exothermic reaction

Heat out

REACTION PROFIL


Endothermic k

EVALUATION

→ Plot temp vs aciu.

vs most

Activation Energy of products irection of reacti

Thermometer Insulated Stopper

REQUIRED PRACTICAL: TEMP CHANGES

OBJECTIVE

→ To investigate temperature change during neutralisation (HCl + NaOH)

HYPOTHESIS

→ Temperature change depends on amount/concentration of reactants

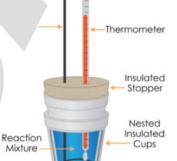
MATERIALS

- Dilute HCl → acid
- Dilute NaOH → alkali
- Styrofoam cup + lid → in
- Thermometer + stirrer
- 25 cm³ measuring cylinder

APPARATUS SET-UP

Thermometer + st through lid → in holds reaction - lid prevents heat

METHOD


- Measure calorimeter
- Record initial temp
- Add 5 m3 HCl > stir > rc max
- Re a volumes or Hc
- Plot biggesc

RESULTS TABL.

r temp change = more j transferred action is exothermic (temp

19

ne →

REACTION +.

ACTIVATION ENERGY

- Collision needed for reaction > must have:
- Enough energy Correct orientatio

rouent collision

'nn ener minimum energy lion

start (more energy

neeu

Ea shown. ergy rise at the start of a reaction profile

NENERGY PROFILES

- Y-axis = energy | X-axis = progress of reaction
- Arrow shows overall energy change:
- ▼ Exothermic → energy released (products) have lower energy)
 - Endothermic > energy absorbed (products) higher energy)
 - ence in height = overall energy change

SNERGY CHANGE (BOND) (HT)

Bond breaking > endothermic (energy in) Bond making → exothermic (energy out) Overall energy change = bond breaking - bond making

ENDOTHERMIC REACTIONS

- More energy absorbed than released $\Rightarrow \Delta H$ is
- Products have more energy than reactants

EXOTHERMIC REACTIONS

- More energy released than absorbed $\Rightarrow \Delta H$ is negative
- Products have less energy than reactants

BOND ENERGY CALCULATIONS

• Equation:

Energy change = Total energy in - Total energy out Steps:

- Add all bond energies in reactants (breaking)
- Add all bond energies in products (making)
- Subtract: in out

Example 1 - Reaction: H₂ + Cl₂ → 2HCl

- Break: H-H (436) + Cl-Cl (242) = 678 kJ
- Make: $2 \times H-Cl(431) = 862 \text{ kJ}$
- $\Delta E = 678 862 = -184 \text{ kJ} \Rightarrow \text{Exothermic}$

Example 2 -Reaction: 2HBr → H₂ + Br₂

- Bonds broken: $2 \times H-Br = 732$
- Bonds formed: H-H = 436, Br-Br = 193 → Total out = 629
- 732 629 = +103 kJ > Endothermic

- ✓ State whether overall energy change is + (endothermic) or - (exothermic)
- ☑ Use the word "energy is released/absorbed"

RATE & EXTENT OF CHEMICAL CHANGE

CALCULATING RATES OF REACTION

- Depends on: type of chemicals / physical state / temperature / concentration / catalysts.
- Measured by how fast > reactant used up / product formed.

CALCULATING RATE

- > amount of reactant used ÷ time taken
- → amount of product made ÷ time taken Units:
- > g/s (mass)
- → cm³/s or dm³/s (gas volume)

METHODS TO MEASURE RATE 1. MASS LOSS (GAS RELEASED)

Mass recorded every few seconds using a

103.0 g

- E.g. CaCO₃ + HCl → CO₂
- Pros: very accurate
- X Cons: gas escapes to air

2. GAS COLLECTION (VOLUME)

- Gas volume collected in:
- > measuring cylinder (downward displacement)
- > gas syringe
- E.g. Mg + HCl > H2
- Volume recorded over time
- ✓Pros: accurate, allows graph plotting
- XCons: syringe can pop off if vigorous

3. PRECIPITATION (CLOUDY MIXTURE)

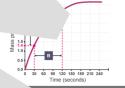
- Precipitate clouds solution → m disappear
- E.g. sodium thiosulfate + HC'
- · Time how long cross disapper

✓Pros: simple setup

XCons: subjective / only one data point , possible

RATE GRAPHS

- Y-axis > Product forr Reactant used
- X-axis > Time
- Steep line > Fast rate | Flat.
 - → Reaction complete
- More product at end → More reactants used


GRAPH SHAP

- Product (asitive curve (steep !
- Reactant L (steep fall then
- Initial rate > Straign. orio;
- r reaction

TE FROM GN. H change in y / change in re points

REACTION RATES **USING MOLF**

- Often more use
- No direct way to moles → must conve. mass/volume to moles

TO CONVERT TO MOL/S

- Mass per unit time + Molar les per unit time mass =
- nit time + 24,000 Volu Jies per unit time cn

EX/

- CO2 lost he rr
- 1. T.
- 2. Mass
- Moles = mass \div M_r = 6.0 \div 44.0 = 0.137 mol
- 3. Rate = moles ÷ time:
- Rate = 0.137 ÷ 150 = 10-4 mol/s

CALCULATING

LADIENTS (HT)

. POINT (USING A

right line touching curve only sint).

two clear points on the tangent → re change in y (product/amount) and x ٤).

dient = change in y / change in x

pply formula:

Rate (gradient) = ΔProduct ÷ ΔTime

/ Know the difference between mean rate (overall change ÷ time) and instantaneous rate (tangent gradient at one point).

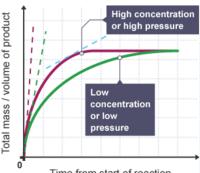
LS AFFECTING OF RF MOT

.s) /

ntration gases

> Car

🥮 Higher . ster product formation / fast reactant use


N GE! TRAPH PATTERN FOR RATI ES

rs below:

- per gradient = faster rate izontal sooner = reaction les quicker
- same final product amount

CONCENTRATION / PRESSURE

↑ Concentration/Pressure = more particles per cm³→ 1 Frequency of collisions → 1 Rate

Time from start of reaction

TEMPERATURE

- ↑ Temp → ↑ Particle kinetic energy
- → 1 Frequency + Energy of collisions

SURFACE AREA

- **↑** Surface area (e.g. powder not lumps) > 1 Area exposed > 1 Collision frequency → 1 Rate
- E Cube cut into smaller cubes = larger total surface area

CATALYST

Catalyst → Provides alternative pathway with lower activation

- → More particles have enough energy to react
- ⇒ Reaction speeds up, catalyst remains unchanged

Graph: Same final amount, steeper initial slope

TIPS

- 🗸 Always mention collision frequency/energy
- ✓ Use graph comparisons: gradient + final plateau
- State particles per unit volume for concentration/pressure questions
- Explain surface area as smaller particle size

CRUDE OIL, HYDROCARBONS & ALKANES

- Organic Chemistry: Chemistry of carbon compounds.
- Hydrocarbons: Compounds made of carbon and hydrogen only.

TYPES OF FORMULAE

- General Formula: Shows the composition of any member of a homologous series (e.g. Alkanes: CnH2n+2).
- Displayed Formula: Shows all the atoms and bonds in a molecule.
- Molecular Formula: Shows the actual number of each atom in a molecule (e.g. Butane: C₄H₁₀).
- Structural Formula: Shows the structure without displaying all bonds (e.g. Pentane: CH₃(CH₂)₃CH₃).

HOMOLOGOUS SERIES

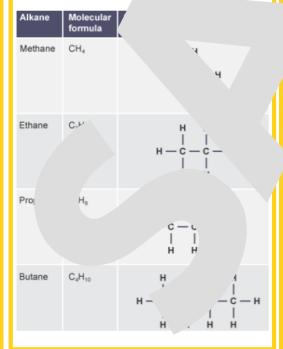
Characteristics:

- · Same functional group.
- · Same general formula.
- · Similar chemical properties.
- Each member differs by -CH2-.
- Gradually changing physical properties (e.g. boiling point, density).

CRUDE OIL

A complex mixture of hydrocarbons.

- Formation: From biomass (plants/animals' over millions of years under high pressur and temperature.
- Finite Resource: Formed much slower than it is used.


ALKANES

Saturated Hydrocarbons:

- Single C–C bonds only.
- General Formula: C_nH_{2n+2}.
- · Unreactive but undergo com'

First Four Alkanes:

- Methane: CH4 (gas)
- Ethane: C2H6 (gas)
- Propane: C₃H₈ (gas)
- Butane: C₄H₁₀ (gas)

FRACTIONAL DISTILLA TON SPETROCHEMICALS

- Crude oil is a mixture of differe hydrocarbons, separated by f distillation.
- Fractions have similar chaisimilar boiling points.
- Larger molecules have higher L condense at the bottom.
- Smaller molecules have lower boiling point condense at the top.
- Most fractions are alkanes (single bonds).

HOW FRACTIONAL TILLATION WORKS

- Crude oil is he virises → enters fractionating
- Vapours rise, cool and conureach th
- Large her b.p.) conclow
- Sw . ocar. b.p.) condense

FLAMMABILITY

 Smaller hydrocarbons | More flammable, ignite easily | Release more energy when burned

PROPERTIES OF

HYDROCARBONS
TO TOS IN PHYSICAL

and on mo'acule size |

need more energy to overcome

, flows less easily |

reases with chain length

ore intermolecular forces) |

_ong-chain hydrocarbons used

as lubricants to reduce friction

f flow | High viscosity =

\w.

uels

.h molecule size |

ermolecular forces

i burning) |

of burn |

IES

cosity (ea

ammabilit

Colour | C'

Strong

enc

COMBUSTION OF HYDROCARBONS

 Burn in air to form water and carbon dioxide | Oxidation: Hydrogen → water | Carbon → carbon dioxide

Examples:

- Methane: CH₄ + 2O₂ → CO₂ + 2H₂O
- Octane (Petrol): 2C₈H₁₈ + 25O₂
 → 16CO₂ + 18H₂O

TIP:

 Balance elements in order: Carbon | Hydrogen | Oxygen | If oxygen is a fraction, multiply all coefficients by 2

Does not flow easily

Does not ignite easily

Crackina Converts long-chain hydrocarbons (low demand) to short-chain ons (high demand).

Demand: Supply = production from crude oil | Demand = customer Short chains (e.g. petrol, kerosene) have high demand | Long chains (e.g. fuel oil) have low demand.

TYPES OF CRACKING

CRAL

- Catalytic Cracking: Heat to 470 550°C → Vapourise → Pass over hot catalyst (e.g. aluminium oxide) → Thermal decomposition.
- Thermal Cracking: Higher temperatures and pressures → Produces more alkenes → Involves steam and heat.

PRODUCTS OF CRACKING

- Alkanes (saturated, single bonds) + Alkenes (unsaturated, double bonds).
- Example: Decane $(C_{10}H_{22}) \Rightarrow Octane (C_8H_{18}) + Ethene (C_2H_4)$.

Writing equations for cracking

- Atoms on each side must balance (Law of Conservation of Mass).
- Example: $C_{20}H_{42} \Rightarrow C_{18}H_{38} + C_2H_4$ | Unknown product is an alkane (CnH₂n+₂).

ALKENES -Homologous series with at least one C=C double bond.

 General formula: CnH₂n | More reactive than alkanes | Used in polymers and as starting materials.

TEST FOR ALKENES - Bromine water test → Alkane: Stays orange (no reaction) | Alkene: Decolourises (reaction with double bond).

FLAME TESTS

- Used to identify metal ions (cations) by the colour of the flame they produce.
- Each metal ion gives a distinctive flame colour.

METHOD

- 1. Use nichrome/platinum wire.
- 2.Clean in acid + heat (no colour).
- 3. Dip in sample → place in blue Bunsen flame.

FLAME COLOURS

- Li+ (Lithium) Crimson
- Na+ (Sodium) Yellow
- K+ (Potassium) Lilac
- Ca²⁺ (Calcium) Orangered

LITHUM

POTASSIUM

COPPER CALCIUM

REQUIRED PRACTICAL

Objective: → Identify ions in unknown ionic compounds using chemical tests.

Hypothesis: → A salt's identity can be determined by its cation + anion.

MATERIALS

- Bunsen burner | test tubes + rack | teat pipette | nichrome wire | limewater |
- 0.4 mol/dm3 HCl | 0.1 mol/dm3 BaCl₂ | 0.4 mol/dm³ HNO₃ | 0.05 mol/dm3 AgNO3 | salt samples.

METHOD

- Use tests for ⇒ flame, hydroxide, carbonate sulfate, halide.
- Use small amount solids in distilled needed.
- Record all results neu repeat unclear ones for confirmation.

CONCLUSION

 Identifu from ions > e.g. Fe2+ -FeSO4 | Li+ + Br-→ U

+MPLE WOI

- Red flame · (Aar
- Sal ur → Fe (NaOH) > or AL. Fe²⁺
- No halide ppt (AgNO3) | W' ppt (HCl + BaCl₂) → SO4 FeSO₄

METAL HYDROXIDES

SODIUM HYDROXIDE TEST

• Used to identify metal cations by the colour of the precipitate formed with NaOH.

METHOD

- 1.Add a few drops of NaOH to the solution slowly.
- 2.Observe the colour of the precipitate.
- 3. Add excess NaOH to see if the precipitate dissolves.

Note:

Some hydroxides dissolve in excess NaOH.

OBSERVATION WITH NAC

- Cu2+ Light blue precipitate - Insol
- Fe²⁺ Green pre Insoluble
- Fe3+ Brown Insoluble
- Ca2+ White Insoluble
- Mg2+ White precipita Insolubl
- Al3+ initate -Disso' colou

NOTES

· Ca2+ and Mg vhite & insoluble (usc to distinguish). ^13+ → white ppt dis.

- "Colu
- · Colourles.
- Clear: transp. still be coloured).

MEI

- Exampl , IR, Mass 3ct πas phy, Flame
- uracu ier to use

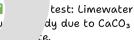
Morc

aditic al methods known spectra

cive than

wn sample can be compared against

CARBONA


PURPOSE

 Identify t nate ion $(CO_3^{2-}).$

METHOD

- Add the san.
- Observe efte. this shows CO2 go. produced.
- Bubble the gas through limewater (Ca(OH)₂).
- Limewater turns ~udy/milky if CO₂ is

- · CO₃
 - (g) + H2c
 - (g) + Ca((s) + H₂O (l)

Connect the test tube mewater quickly so no

the presence of s in a solution.

METHOL

- 1.Add dilute hydrochloric acid (HCl) to the sample. Removes any carbonate apurities that could give íalse results.
- 3. Add barium chloride solution (BaCl₂) (or barium nitrate if avoiding chloride ions).

OBSERVATION

✓ White precipitate of barium sulfate (BaSO₄) forms if sulfate ions are present.

EQUATION

- $Ba^{2+}(aq) + SO_4^{2-}(aq) \Rightarrow BaSO_4$
- TIP: HCl must be added first without it, carbonates may also produce a white precipitate and interfere with the test.

ADVANTAGES

- → Accurate, fast, sensitive (detects small amounts).
- → Works for mixtures (unlike flame tests, which detect one ion at a time).

USING REFERENCE DATA

- → Compare sample spectrum with known reference spectra.
- → Matching lines identify metal ions present.

HALIDES

PURPOSE

Identify halide ions (Cl-, Br-, I-) negative ions from Group 'ments.

METH/

- 1. A acid (HNO₃) e impurities. use HCl — it ns Cl-ions that iere.
- 2. Au., silver nitrate solution (AgNO₃). bserve the colour of the silver halide precipitate formed.

REACTIONS

Example (for chloride):

- KCl (aq) + AgNO₃ (aq) → KNO₃ (aq) + AgCl (s)
- Ionic equation:
- Ag+ (aq) + X- (aq) > AgX (s)

OBSERVATIONS

- Cl- White precipitate – Silver chloride (AgCl)
- Br- Cream precipitate – Silver bromide (AgBr)
- I- Yellow precipitate – Silver iodide (AgI)
- Always acidify with nitric acid, not hydrochloric acid, to avoid false positives from chloride ions.

FLAME **EMISSION** SPECTROSCOPY

An instrumental method used to identifu metal ions in solution and determine their concentrations.

HOW IT WORKS

- Sample → placed in flame > ions excited > electrons fall back > emit light.
- Light → passes through spectroscope → splits into line spectrum (unique pattern).
- Each element → emits light at specific wavelengths → identifies ion + shows concentration.

KEY POINTS

- Each metal gives a distinct line pattern.
- Intensity of lines = concentration.

Z

MR. ZEE'S RESOURCES