

NOTEBOOK

ALL THE KEY
CONTENT IN 32
PAGES!

CONTENTS

HYSICS PAPER 1	ENERGY	1
	ELECTRICITY	4
	PARTICLE MODEL OF MATTER	8
PHY	ATOMIC STRUCTURE	10
PHYSICS PAPER 2	FORCES	14
	WAVES	22
	MAGNESTISM & ELECTROMAGNETISM	28
	SPACE PHYSICS	31

ENERGY

ENERGY STORES & SYSTEMS

A system is an object or group of objects.

 Energy within a system can change when the system changes.

Systems can be:

- Open → Energy and matter can enter or leave.
- Closed → Only energy can enter or leave.
- Isolated → Neither energy nor matter can enter or leave.

ENERGY STORES

- Energy is stored in different ways depending on the object's state:
- 1. Kinetic → Moving objects
- 2.Gravitational Potential → Raised objects in a gravitational field
- Elastic Potential → Stretched or compressed objects
- 4.Thermal → Hot objects
- 5.Chemical → Stored in fuels, food, batteries
- 6.Magnetic → Interacting magnets or magnetic materials
- 7.Electrostatic → Interacting electric charges
- 8. Nuclear → Energy within atomic nuclei

ENERGY TRANSFER PATHWAYS

Energy is transferred between stores through:

- Mechanically → By a force doing work (e.g. pushing, pulling)
- Electrically → By a moving charge (e.g. in circuits)
- Heating (by particles) → From ho' cooler objects (conduction)
- Heating (by radiation) → By electromagnetic waves (e.g. light, infrared)

ENERGY TRANSFER EXAMPLES

MOBJECT PROJECTED UPWARDS

🚗 MOVING OBJECT HITT1.

OBSTACLE

Chemical store (fuel) → Kinetic (moving car) → Thermal store (wasurroundings, dissipated)

• Also: Friction - Thermal (air, ground Sound → air v' 15

⇒ VEHICL RATING
Chemica uel) → Kine¹
(speedin

🚗 VEHIC

Kinetic stc / Thermal (brakes, grou.

- Also: Friction → thermal | Sound → vibrations
- BOILING WATER IN A KETTL
 Electrical store (mains) → Therm store
 (heating element) → Thermal store (water)

KINETIC ENERGY (Ek)

 Energy an object has due to its mass and speed.

Energy Transfer:

- Speeds up → energy transferred to kinetic store
- Slows down → energy transferred away from kinet store

EQUATION:

- $E_k = 1/2 \times m \times v^2$
- E_k = Kinetic energy (Joules, J)
- m = Mass (kilograms, kg)
- v = Speed (metres per second, m/s)

Q EXAMPLE CALCU.

Car travelling (2500 kg) . m/s:

• $E_k = 1/2 \times 250^{\circ}$ = 500,000 J

Apple falling

• $E_k = 1/2$

FTIP:

- Squr red → Cormir req t
- Rear.
 key skill in regularly.

· TT |

E

En. d in a..
 objec rk is done
 stretch ss it.

Transfer:

ased → Energy cransferred

m elastic potential

FQUA.

- $E_e = 1/2 \times$
 - - Flactic no. Atial energy

stant (Newtons/m) Extension (metres, m)

EXAMPLE CALCULATIONS:

Spring (3 N/m) stretched by 0.5 m:

 $E_e = 1/2 \times 3 \times 0.5^2 = 0.375 \text{ J}$ ring (5 N/m) compressed by 2 m:

 $_{e} = 1/2 \times 5 \times 0.2^{2} = 0.1 \text{ J}$

Spring (250 N/m) extended by 0.014 m:

• $E_e = 1/2 \times 250 \times 0.014^2 = 0.025 \text{ J } (2 \text{ s.f.})$

📝 TIP:

- Convert to metres if given in cm.
- Make sure the spring has not exceeded its limit of proportionality for this equation to be valid.

GRAVITATIONAL POTENTIAL

TRGY (Ep)

gy stored in an object due to its
ght in a avitational field.
gy Transf
Lifted up gy transferred to
ravitat cential st
nergy tr d away
onal pot ore

Z EQL

- E_p = m ^
- $E_p = Gravitat$, al energy (Joules, J)
- m = Mass (kilograms, kg)
- g = Gravitati
 per kilogran
 h = Height
 , m)

L FIELD STRENGTH:

- Nv. g (less than Earth → easier to lift)
- Gas Giants (e.g. Jupiter): ~25 N/kg (more than Earth → harder to lift)

EXAMPLE CALCULATIONS:

- Man (70 kg) climbing 3 m stairs (g = 9.8 N/kg):
- E_p = 70 × 9.8 × 3 = 2058 J
 Cannonball (5 kg) lifted 56 m (g = 10 J/kg):
 E_p = 5 × 10 × 56 = 2800 J
 - Book (0.5 kg) lifted 1.5 m (g = 10 N/kg):
- $E_p = 0.5 \times 10 \times 1.5 = 7.5 \text{ J}$

₽ TIP:

а

stic

- Use g = 9.8 N/kg unless stated otherwise.
- Remember to convert mass to kg if given in grams.

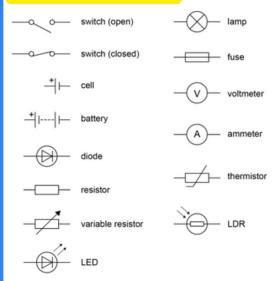
THERMAL ENERGY (ΔE)

Energy in the thermal store of an object, related to its temperature.

SPECIFIC HEAT CAPACITY (c)

The amount of energy needed to raise the temperature of 1 kg of a substance by 1°C.

- Low Specific Heat Capacity: Heats up and cools down quickly (e.g. copper, 390 J/kg°C).
- High Specific Heat Capacity: Heats up and cools down slowly (e.g. water, 4200 J/kg°C).


FQUATION:

- $\Delta E = m \times c \times \Delta \theta$
- ΔE = Change in thermal energy (Joules, J)
- m = Mass (kilograms, kg)
- c = Specific heat capacity (J/kg°C)
- Δθ = Temperature change (degrees Celsius, °C)

EXAMPLE CALCULATION:

- Heat 2.00 kg of water from 10°C to 100°C (c = 4200 J/kg°C):
- $\Delta\theta = 100 10 = 90^{\circ}C$
- ΔE = 2.00 × 4200 × 90 = 756,000 J
- **TIP:** Units Matter: Always check that mass is in kg and temp. change is in °C.
- You do not need to memorise specific heat capacity values, they will be given in exams.

- Cell/Battery: Provides potential difference (battery = 2 or more cells)
- Switch: Turns circuit on (closed) or off (open)
- · Fixed Resistor: Limits current, fixed resistance
- Variable Resistor: Adjusts resistance (e.g., volume controls, dimmer switches)
- Thermistor: Resistance changes with temperature (↓ temp = ↑ resistance)
- LDR: Resistance changes with light intensity (↓ light = ↑ resistance)
- Diode: Current flows in one direction only (used for AC to DC conversion)
- LED: Emits light when current passes throu (e.g., indicators)
- Ammeter: Measures current (connected in series)
- Voltmeter: Measures potential difference (connected in parallel)

REQUIRED PRACTICAL

🜣 EQUIPMENT LIST

- Power Supply → Source of potential a...
- Wires → Connect all components in the cn
- Crocodile Clips → Connect different lengths or resistance wire
- Ammeter → Measure current (A)
- Voltmeter → Measure Lantial difference (V)
- Thin Resistance Wire at different lengths
- Metre Ruler → Meas

EFFECT OF WIRE LENGTH O. VARIABLES

- Independent → Length of wir.
- Dependent → Resistance (R)
- Control → Pot intial difference of purply, wir erature

METHO

- 1.Set up suit with por mete voltn d resistar

 2. Attac rocodir nd at a c s.n).

 3. Recora rence (V)
- current (1, 4.Move the second clip further alo re (e.g. 20 cm, 30 cm) and repe nents.
- 5. Calculate resistance using each length.
- 6.Plot a graph of resistance (y-,) against wire length (x-axis).

CHARGE & CURRENT

CURRENT AND CHARGE

- Current = Flow of electric charge
- Measured in amperes (A) (an ammeter

Q

charge

ı

Formula: $Q = I \times t$

- Charge (Q) in coulombs (C)
- Current (I)
- in amperes (A)

 Time (t)
- in seconds (s)

📝 WORKED EXAMPLE (CHARGE)

A current of ws through a wire for charge flow

Step 1: Write down c. quantities

- Current /T
- Time

Step 2.

• Q

Step citute the

• (200 = 60

`₹F1

- The E. Per unit
 - neasured in vol.

re (W) in , () C. in coulombs (c)

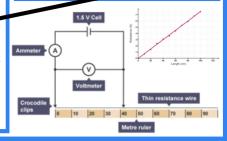
'.E 'NCE)

s used to move 80 C or cross ge through a rouit, what is the potential rce?

'awn the known

qu.

NCE


- Wor W) = 400 J
- Charge = 80 C ie formula

stitute the values

• V = 400 ÷ 80 = 5 V

CONVENTIONAL CURRENT AND ELECTRON FLOW

- Conventional current flows from positive to negative
- Electron flow (actual flow) is from negative to positive
- Current is the same at all points in a closed loop (e.g. a series circuit)

CURRENT, RESISTANCE S POTENTIAL DIFFERENCE

- R re Opposition to
- S! . Measurr Ohms (Ω) Ohm volt per $(1 \vee / A)$ rent $(1) \vdash a$ ant dep its potential
- High , ow current (e.g., thin, long v. sulators)
- Low resistance High current (e.g., thick, s' wires, good condu

1HM'S

(Potential difference = Resistance)

it.

rearranged as:

· R = \ / I

WORKED EXAMPLES

📝 Example 1:

• Problem: A resistor of 10 Ω has a current of 0.3 A flowing through it. What is the potential difference?

Calculation:

- V = I × R
- V = 0.3 × 10 = 3 V
- 📝 Example 2:
- Problem: A voltmeter reads 6.0 V and the resistor is 4.0 Ω. What is the current through the circuit?
- Calculation:
- I = V / R

TIPA Voltage and potential difference are the same thing - both are measured in volts (V).

ELECTRICITY

PRACTICAL CONT.

ANALYSIS OF RESULTS

- The graph should be a straight line through the origin → resistance is directly proportional to wire length.
- Longer wires have higher resistance as electrons collide more frequently with metal ions.

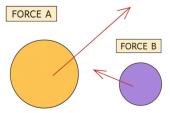
***** EVALUATING THE EXPERIMENT

- Systematic Errors → Ensure crocodile clip is at 0 cm to avoid zero error | Check meters start at 0
- Random Errors → Use low currents to avoid heating the wire | Allow wire to cool between readings | Repeat for reliable results

A SAFETY CONSIDERATIONS

- Avoid touching live wires risk of burns if wire overheats
- Turn off power if burning is detected
- Keep liquids away from the equipment

SCALARS & VECTORS


- Scalars → have magnitude only (e.g. speed, distance, mass)
- Vectors → have magnitude & direction (e.g. velocity, displacement, force)

Key comparisons

- Speed ⇔ Velocity | Distance ⇔
 Displacement | Mass ⇔ Weight
- → Scalars = no direction | Vectors = include direction

VECTOR REPRESENTATION

- Vector shown as an arrow ⇒
- Length = magnitude | Direction = direction of quantity
- E.g. Force A > Force B in magnitude | A points up-right, B points up-left

SCALAR VS VECTOR CONFUSION

- Displacement < Distance (displacement = straight line, distance = total path)
- Velocity ≠ Speed (same speed, different direction = different velocity)

RESULTANT FORCE - SAME DIRECTION

- Forces add if in same direction ⇒
- E.g. 2 N + 3 N → Resultant = 5 N (same direction)

FORCF

RESULTANT FORCES

 Resultant force = single overall force from combining all individual forces on a body Also known as ⇒ net force

Balanced Forces:

- → Equal and opposite :
- nent force i
- e.g. weight down = norn.
 ⇒ resultant force = 0

Unbalanced Forces:

- → Forces don't cancel → object a in direction of 'arger force
- e.g. Persor 'ls 80 N left, Person
 100 N ric 'tant = 20 N right

CALCULA SULTANT FO

- Same on ⇒ add f
- Oppo 3ctions
- If eq ...an. (balan.
- Always > .de + directir
 N to the right;

free Body Diagrams

- · Show all forces on an object
- Each force = arrow (→) scale → magnitude
 → labelled → shows direction

CONTACT & NON-CONTACT FORCES

 A force = a push or pull due to interaction with another obje

TYPES OF FORCES

- Contact = objects mus
 ⇒ e.g. friction, tension, c
 resistance, reaction force
- Non-contact = no contact needed ⇒ e.g. gravity, electrostatic, magnetic

EFFECTS OF FORCES

Forces can ⇒ c re speed | direction | sh

EXAMPLES OF CHA.

- Thrust → changes spe
- Gravitational attraction > changes
 - Comp hape

CONTF LE SUN

- Fr opposes r(s rub)
- string
- Reaction . ^ a <urface (norma.

TORCE SUMIN.

active force

stac. Trepulsiv

ch Mag. ractive/repulsive

EWTON'S

"HIRD LAW.

then two objects interact → they areal and opposite forces on

• th (gravitational) |
Cha. .d (contact)

" N MISTAKES

jravity" → use attraction

Jon t use "wind resistance" or air pressure" → correct = air esistance (drag)

FORCES AS VECTORS

 Forces are vector quantities ⇒ have both magnitude (N) and direction

FORCE PAIRS (INTERACTIONS)

 When two objects interact, they exert equal & opposite forces (Newton's 3rd Law).

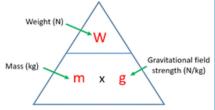
Examples:

- Pushing rock → person pushes rock rock pushes back
- Standing on ground → foot pushes down , ground pushes back up
- All force pairs shown as arrows in diagrams.

GRAVITY, WEIGHT & MASS

MASS - Amount of matter in an object|
Scalar (direction) | Measured in kg |
Stays ' everywhere (e.g. Earth
vs M

Force du vity acting Vector (nwards) |


wtonmeter (s, nanges with locatio.

GRAVITATIONAL FIELD STRENGTH

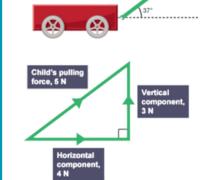
- Force | Measured in N/kg
- Eart N/kg | Moon ≈ 1.6
 N/k ↑ weight

ASS-GRAVITY

weight in N | m = mass in kg |
g = gravitational field strength in
N/kg

EXAMPLES

- 1. Calculate weight
- Mass = 70 kg | g = 9.8 N/kg \Rightarrow W = 70 x 9.8 = 686 N
- 2. Calculate mass from weight
- Weight = $98 \text{ N} \mid g = 9.8 \Rightarrow m = 98 \div 9.8 = 10 \text{ kg}$


MEASURING MASS VS WEIGHT

- Mass → measured with balance (compares mass to known mass)
- Weight → measured with spring balance/newtonmeter (measures force)

RESOLVING FORCES

Breaking a single force into components at right angles (horizontal and vertical) -> Makes it easier to analyse forces acting at angles

- e.g. 5 N force at 37°
- → Horizontal = 4 N
- → Vertical = 3 N
- → Together have same effect as original

PRESSURE IN A FLUID

Fluids → liquids or gases that can flow.

- Pressure = concentration of force or force per unit area → formula: P = F
- Units \Rightarrow Pascals (Pa) | 1 Pa = 1 N/m².
- Pressure acts at 90° (normal) to the surface.

EXAMPLES

- Tractors ⇒ large tyres ⇒ spread force over large area > ↓ pressure > no
- Nails/Drawing pins ⇒ sharp tip ⇒ small area \Rightarrow \uparrow pressure \Rightarrow easier to penetrate.
- High heels vs Flat shoes → smaller area = higher pressure | larger area = lower pressure.

EQUATION

- . P = F ÷ A >
- rearrange: $F = P \times A$,

area = large pressure.

- $A = F \div P$ → Large area = small pressure | Small
- Always use cross-sectional area where force acts at right angles.

In liquids:

- Immersed objects experience pressure from all directions → fluid exerts forces normal to surfaces.
- Pressure in fluids can be used to lift or move objects (e.g. hydraulic systems).

WORKED EXAMPLE

- Given: area = $2.73 \times 10^{-2} \text{ m}^2$, pressure = 5.28×10⁵ Pa
- $F = P \times A \Rightarrow (5.28 \times 10^5) \times$ $(2.73\times10^{-2}) = 1.44\times10^{4} \text{ N} = 14.4 \text{ kN}$ (3 s.f.)

ATMOSPHERIC PRESSURE

The Earth's atmosphere is a thin layer of air around the planet > extends over 100 km into space.

At sea level:

- Air exerts a pressure of 100 boa
- Atmospheric pressure air molecules collidin ⇒ force per unit area.

ATMOSPHEDIC ODESSIDE

Variation with Altitude:

- Altitude ↑ > Pressure ↓
- → Higher altitude = fewer air molecules above > less weight of an pressing do
- → Air be dense, so fewer collisio 11th surfaces.

Graph shr

idly at fir Decre off wi asing 1

Key idea:

- us on the Pressur weight or
- The higher you go, the smaller th air column and lower the pres
- Everyday links:
- Weather: high pressure = cal skies | low pressure = cloudy, unsettled.

PRESSURE IN A LIQUID (HT)

Pressure in a liquid is caused by the weight of the liquid above a point > increases with depth and density.

KEY EQUATION:

• $p = h \times p \times q$

P = h r

Pressure = height of the column x density of . gravitational field strength

- ⇒ p = pressure (Pa) | h = height/depth (m) $| \rho = \text{density} (kg/m^3) | g =$ gravitational field strength (N/kg).
- On Earth, $g \approx 9.8 \text{ N/kg}$

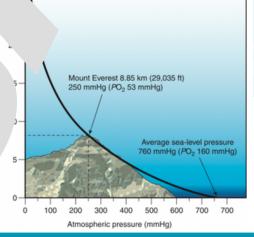
FACTORS AFFECTING PY

- Depth (h): ↑ depth → above > ↑ pressure.
- Density (p): denser liquid → grea per volume > ↑ press
- Gravitational st nger gravity > ↑ pr
- Direction of n all directions a ight ang) to surfaces.

EXAMPLES

- Pressure. rface (greater dept.
- Jet from bottom no 1 top = weakes.

Holes for jets Spc * jet Pres increas with depι Strongest jet


MPLE:

- ressure at 15 m depth in m^3 , g = 9.8 N/kg). wat
- p = hpg9.8 = 147,000 Pa = 147 kPa.

 $= p \div (pg)$. kPa, ρ = 1000 kg/m³ → $000 \div (1000 \times 9.8) = 3.06 \text{ m}.$

rines and

alls.

UPTHRUST (HT)

Upthrust = upward force on an object bmerged in a fluid (liquid or gas) → cts opposite to weight.

Caus 'u difference in pressure bet , and bottom of object > Jeriences 'aher pressure bo ssure 11 th).

> + = Weig placed fluid

- enser fluid → greater up
- → Volume of the displaced (larger volume reater upthrust)

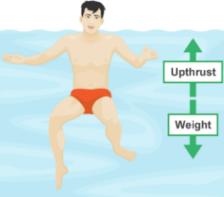
Effects:

- Object less when immersed iced by upthrust). (par use tanks: fill with ink | fill with air > rise
 - , weight vs upthrust).

FLOAIL G & SINKING

Balance condition:

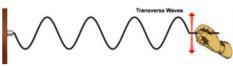
- Float → Upthrust = Weight
- Sink → Weight > Upthrust
- Hover/submerged → Upthrust = Weight (neutral buoyancy)


Density link:

- Object less dense than fluid → floats.
- Object more dense than fluid > sinks.

Why:

- If object's density < fluid's, it displaces enough fluid before being fully submerged to make upthrust = its weight.
- If denser, it can't displace enough fluid > upthrust < weight > sinks.


- Polystyrene ($\rho = 0.05 \text{ g/cm}^3$) > floats (much less dense than water, $1.0 \, \text{g/cm}^3$).
- Wood ($p = 0.9 \text{ g/cm}^3$) \Rightarrow partly submerged but floats (slightly less dense).
- Iron ($\rho = 7.9 \text{ g/cm}^3$) \Rightarrow sinks (denser than water).

TRANSVERSE & LONGITUDINAL WAVES

Waves transfer energy, not matter → 2

- Transverse → vibrations perpendicular to energy transfer
- Longitudinal → vibrations parallel to direction of energy transfer

TRANSVERSE WAVES

Definition: Vibrate at right angles (90°) to direction of energy transfer → e.g. EM waves, ripples, S-waves, guitar strings

- Crest = highest point | Trough = lowest
- Can move through solids, liquid surfaces, and vacuum (EM only)
- ≤ Seen on a rope > move hand up/down > wave travels across

LONGITUDINAL WAVES

Definition: Vibrate parallel to energy transfer → e.g. sound, P-waves, pressure waves

- Compression = close particles | Rarefaction = spread out
- Travel through solids, liquids, gases ⇒
- Seen in a slinky ⇒ push/pull coil ⇒ wave travels forward

REPRESENTING WAVES

Transverse: drawn as continuous co **III** Longitudinal: drawn as lines → compressions close, rarefactions spr

⊕ WAVEFRONTS

- Wavefront = top view of wave
- Transverse: 1 line = crest or trough | Longitudinal: 1 line = compression or rarefaction
- Close lines = short wav ' apart = long wavelength

TIP Know the different

- > wavefront diagram (line
- > wave shape diagram (side

TRANSMISSION OF SOL WAVES

Speed deper close particles are. Fastest in .rticles tightly nacked).

- When oves from c anoth e speed c'
- This char while
- If spee Jch ↓ If speed .

REFRACTION OF SOUND FROM DENSER > LESS DENSE

- Velocity decreases
- Wavelength decreases
- Frequency stays the same

WAVE MOTION

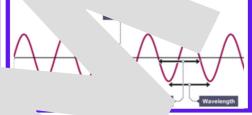
Waves transfer energy, not matter, through a medium > particles oscill∕ but remain in the same place.

AMPLITUDE (A)

- Maximum displacement from r position to peak/trough.
- Measured in metres (m) > bis amplitude = more energy.

WAVELENGTH (λ)

- Distance between same points on two adjacent waves (e.g. peak to peak or trough to trough).
- Measured in metre
- Transverse: crest ough to trough
- Longitudinal: centre o. next compression


FREQUENCY (f)

- Number of int each second.
- Unit = 1 (2) > 1 H. re per secon
- High `ucu → mo 14

TIME PL.

Time for or. a point or one full cycle.

seconds (s) . T > T = 1 ÷ 1 ~u in Hz, T =

VING WAVE SPEED

WEEN TWO POINTS 20 m apart >

- distance
 - with trundle wheel > one bangs ien blocks above head pwatch to time delay

nearing 🔔 erage time

peea or sound = distance + time

ETHOD 2: USING AN OSCILLOSCOPE

Place 2 microphones ~5 m apart (measured with tape measure) > connect to oscilloscope → loud sound 'ear 1st mic (e.g. clap) → oscilloscope ws time delay between microphones Speed of sound = distance between nics + time between peaks

ALT OSCILLOSCOPE METHOD – USING SIGNAL GENERATOR

- Attach signal generator to speaker > connect to 2 microphones + oscilloscope → move one mic until waves align (1 wavelength apart)
 - \Rightarrow Measure distance (λ), use known frequency (f)
- \Rightarrow Speed = f $\times \lambda$

WAVE EQUATION

Wave Speed = Frequency × Wavelength

 $v = f \times \lambda$

- o speed (m/s) → how fast cransferred
- ency (Hz' number of passing p welength istance g points on an corr

.ypes dinal) (trans.

🔁 REARRANGI. , THE EQUATION

ED EXAMPLE

A wa. has speed 0.12 m/s, and a time period of 4 s

- a) Find frequency
- · b) Find wavelength

Part (a):

• $T = 4 s \Rightarrow f = 1 \div T = 1 \div 4 = 0.25$ Нz

Part (b):

- v = 0.12 m/s f = 0.25 Hz
- $\lambda = v \div f = 0.12 \div 0.25 = 0.48 \text{ m}$

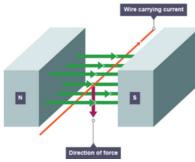
- ☑ Use correct symbols: v, f, λ (not L
- Watch for kHz → 1 kHz = 1000 Hz
- ☑ If units are in cm, convert speed to cm/s

MEASURING CONT.

MEASURING SPEED OF WATER WAVES

- In calm water → measure distance between 2 people with tape measure → one creates ripple → second times ripple travel using stopwatch
- → Repeat 10× for average
- → Wave speed = distance ÷ time

TIP - ACCURACY


- Most accurate → oscilloscope (automatic timing)
- Least accurate → direct timing (short interval + human reaction

MAGNESTISM & ELECTROMAGNETISM

THE MOTOR EFFECT (HT)

- When a current-carrying conductor is placed in a magnetic field, it experiences a force.
- The conductor's magnetic field interacts with the external magnetic field.
- The direction of the force is perpendicular to both the magnetic field and the current.
- No force if current is parallel to magnetic field lines.

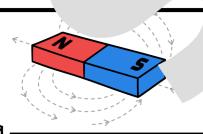
FORCE SIZE FACTORS

- Magnetic flux density (B) stronger field → larger force.
- Current (I) higher current ⇒ larger force.
- Length of conductor in field (l) longer conductor ⇒ larger force.

FORCE EQUATION

- F = B × I × l
- F = force (N)
- B = magnetic flux density (tesla, T)
- I = current (A)
- l = length of conductor in field (m)

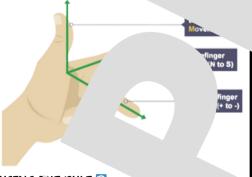
REVERSING FORCE DIRECTION


- Reversing the current reverses the force direction.
- Reversing the magneting direction also reversable direction.

WORKED EXAMPLE

A wire of length 0.40 m carrie current of 2.5 A at right angles t magnetic field of flux density 0.60 Calculate the force on the wire.

- · Working:
- F = 0 $\times 0.40$
- F = 0


Answer: :e on th

FLEMING'S LEFT-HAND RV (HT)

Used to find direction of force on a cu carrying conductor in a magnetic fiela.

- Three directions are all at right angles coeach other:
- Thumb | = Force / Thrust / Motion
- First finger ⊕ = Magnetic Field (N > S)
- Works only if conductor is field, and current are perper

using 🏋 rule 💽

- P. Lion of curre.
- Thumb so. the force,

TIPS 💡

magnetic field is om North to

مر بروں دھم physically use your مرد — just do it subtly!

LOUDSPEA.

Loudspeakers & hew one

her ones convert Jnd via the MOTOR

in coil changes

→ magnetic field around coil
→ interaction with permanent
→ force on coil (Fleming's LH rule)
vibrates → cone vibrates → air
ates → sound waves.

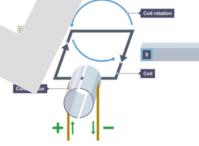
'E OF A LOUDSPEAKER

re wrapped around one pole of a µ ant magnet → attached to a spe r cone.

Frequency of sound = frequency of AC changing AC frequency changes pitch).

PHONES

Nork identically to loudspeakers but in mini form ⇒ small coil + small permanent magnet + small cone/diaphragm.


- Always mention alternating current + changing magnetic field + force on coil.
- Do not confuse with microphones (they detect sound, not produce it).

ELEC' MOTORS (HT)

the moto — magnetic periences

'ar a uniform

 Con. ring commuta pon brushes ⇒ allows current action in coil to reverse every half-turn, keeping rotations same direction.

FORCES ON THE COIL

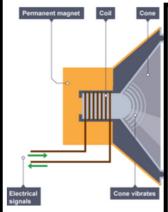
Horizontal position:

- Current flows in opposite directions on each side of the coil → forces act in opposite directions (one up, one down) → coil rotates.
- Use Fleming's Left-Hand Rule to find force directions.

Vertical position:

- Split ring not in contact with brushes ⇒ no current ⇒ no force.
- Coil keeps moving due to momentum.

 After vertical:
- Split ring reconnects; current flows again but coil sides swapped.
- Forces act in same rotational direction → continuous spin.


factors affecting the motor

Speed ↑ by:

- · Increasing current
- Using a stronger magnet
 Direction of rotation changed by:
- · Reversing current supply
- Reversing magnetic field (swap magnet poles)

Force output ↑ by:

- Increasing current
- · Increasing magnetic field strength
- · Adding more turns to coil

--Always
state that
forces on
opposite
sides of coil
are in
opposite
directions
due to
opposite
current
--Fleming's
Left-Hand
to check
direction

THE SOLAR SYSTEM

- Sun at centre ⇒ a star ⇒ >99% of Solar System's mass.
- 8 planets orbit the Sun.
- Dwarf planets also orbit the Sun
 gravity not strong enough to
 clear neighbourhood.
- Rocky planets → Mercury, Venus, Earth, Mars.
- Gas planets → Jupiter, Saturn, Uranus, Neptune.

MOONS / SATELLITES

- Moons = natural satellites (orbit planets).
- Artificial satellites = man-made (e.g. ISS).

ASTEROIDS & COMETS

- Asteroid = small rocky object orbiting Sun → asteroid belt between Mars & Jupiter.
- Comet = ice + dust → long elliptical orbit → forms a tail when close to Sun.

MNEMONIC FOR PLANETS

 My Very Excellent Mother Just Served Us Noodles.

OUR PLACE IN SPACE

- Solar System = part of Milky Way galaxy.
- Milky Way = billions of stars ⇒ some have planets.
- Universe = billions of galaxies.

DISTANCES IN THE SOLAR SYSTEM

- We see planets because they reflect sunlight.
- Outer Solar System > from Sun > even lip to reach.
- · Light from Sun to Ear
- Nearest star light trave years.

SPEED OF LIGHT

• $c = 3 \times 10^8$

LIFE (STAR LIFE CY(SUN)

 nebula → massive main sequence scar → red supergiant → supernova → neutron star / black hole

OF LAR

STAR FORMATION

NEBULA

• Giant cloud of hydrogen gas + dust

FORMATION PROCESS

- Gravity pulls particles closer toget
 ⇒ cloud collapses ⇒ heats up
- Core becomes dense + hot → be rotate
- Hot, dense ball forms → protostar

PROTOSTAR

- Gravity pulls particles inward ⇒ density ↑, temperature ↑
- More collisions between ticles
- When hot enough, nu starts (H nuclei → He.

MAIN SEQUENCE STAR

- Fusion releases heat + light ene. outward force
- Star becomes s' main sequence for

EQUILIBRIUN

BALANCE OF

Gravity Ils o yers inward

ARS

- Fusion pressure hot expression gases
- Ba¹ ~vces ⇒ star is .

IF T

- Ten. "ward press."
- Temp ↓ nergy pressure ↓ ntracts

FR

`4NT

- , 'qears, hydrogen runs out -
- Core beging the jum → carbon → nitrogen/oxyg the nents up to

. + cool → star ergiant.

SUP

- stops in the core ⇒ core
 ses suddenly.
 - / layers explode outward → ernova.
 - on creates: Neutron star (dense
 - gas/dust → new nebulae le may form new stars +
- plu tary systems.

 Heaviest elements (heavier than iron

Heaviest elements (heavier than iron) are formed and scattered into space.

TRON STAR / BLACK HOLE

Neutron star forms from the collapsed dense core.

If the star is very massive, core collapses further:

 Forms a black hole (extremely dense; gravity so strong not even light escapes).

SPACE P/ YSICS

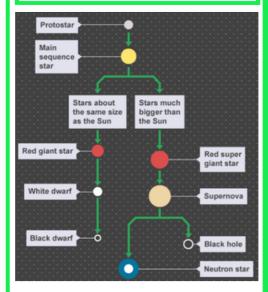
MAS

- All stars > ame: nebula > protostar > ma. equence star.
- Final stap < depend on star size:
- Stars ab same size as the Sun
- Stars n ger than the Sun

N-LIKE STARS

Jence star → Red giant → Vv. varf → Black dwarf

RED GIANT


- After billions of years, hydrogen fuel starts to run out.
- Fusion decreases ⇒ core shrinks + heats (gravity > pressure).
- Core becomes hot enough for helium to fuse into heavier elements.
- Outer layers expand + cool ⇒ star becomes a red giant.

WHITE DWARF

- Helium eventually runs out ⇒ fusion stops.
- Star becomes unstable ⇒ core collapses under gravity.
- Hot, dense remnant = white dwarf, which gradually cools.
- As it cools, the energy it emits decreases.

BLACK DWARF

- When the white dwarf loses almost all remaining energy ⇒ black dwarf.
- It continues cooling until it eventually becomes invisible.

Z

MR. ZEE'S RESOURCES